https://vjudge.net/problem/UVA-11806

题意:

在一个m行n列的矩形网格里放k个相同的石子,有多少种方法?每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。

思路:

如果考虑各种情况的话很复杂,设满足第一行没有石子的方案集为A,最后一行没有石子的方案集为B,第一列没有石子的方案集为C,最后一列没有石子的方案集为D,全集为S。

一个容斥原理的公式就可以解答出来,用二进制来枚举方案集的组合。

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std; const int mod = ;
const int maxn = +; int c[maxn][maxn]; void init()
{
for (int i = ; i <= maxn; i++)
{
c[i][] = c[i][i] = ;
for (int j = ; j < i; j++) c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
} int main()
{
//freopen("D:\\input.txt", "r", stdin);
int T;
int kase = ;
int n, m, k;
scanf("%d", &T);
init();
while (T--)
{
scanf("%d%d%d", &n, &m, &k);
int sum = ;
for (int S = ; S<; S++)
{
//S=0时就相当于计算c[n*m][k],不考虑条件时的所有方法数
int b = , row = n, col = m;
if (S & ) { row--; b++; }
if (S & ) { row--; b++; }
if (S & ) { col--; b++; }
if (S & ) { col--; b++; }
if (b & ) sum = (sum + mod - c[row*col][k]) % mod;
else sum = (sum + c[row*col][k]) % mod;
}
printf("Case %d: %d\n", ++kase, sum);
}
return ;
}

UVa 11806 拉拉队(容斥原理)的更多相关文章

  1. Uva 11806 拉拉队

    题目链接:https://uva.onlinejudge.org/external/118/11806.pdf 题意: n行m列的矩阵上放k个棋子,其中要求第一行,最后一行,第一列,最后一列必须要有. ...

  2. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  3. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  4. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  5. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  6. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  7. uva 11806 容斥原理+dfs

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  8. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  9. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

随机推荐

  1. xcode官网下载地址

    https://developer.apple.com/downloads/

  2. linux 程序启动与停止管理脚本

    公司接了一个第三方的系统,基于linux写的几个程序,一共有9个部件,第三方没有给脚本,每次启动或停止都得一个一个手工去停止或修改.......,这里稍微鄙视下. 没办法,求人还不如自己动手写, 需求 ...

  3. 关于Visual Studio 20**自动添加头部注释信息

    作为一个万年潜水党,不管这一篇文章技术含量如何,也算是一个好的开始吧.   在日常的开发中我们经常需要为类库添加注释和版权等信息,这样我们就需要每次去拷贝粘贴同样的文字,为了减少这种重复性的工作,我们 ...

  4. thinkphp---定义前台视图模板

    具体可以参考: http://document.thinkphp.cn/manual_3_2.html#template_define 方法一:在入口文件中定义 // 定义模板路径 define(&q ...

  5. JS实现拖拽效果

    <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...

  6. Ubuntu 16.04 安装和配置 Redis

    因为发现之前手动安装的 redis 与现有的教程不一样,所以总结统一一下安装的标准步骤. 安装依赖项 为了获取最新版本的 Redis,我们将从源代码进行编译和安装.下载源代码之前,需要先安装一些编译所 ...

  7. 删除Excel中的复选框等控件

  8. 解决“The remote certificate is invalid according to the validation procedure”问题

    在用HttpClient发起https请求时,遭遇了“The remote certificate is invalid according to the validation procedure”异 ...

  9. AC自动机板子题/AC自动机学习笔记!

    想知道484每个萌新oier在最初知道AC自动机的时候都会理解为自动AC稽什么的,,,反正我记得我当初刚知道这个东西的时候,我以为是什么神仙东西,,,(好趴虽然确实是个对菜菜灵巧比较难理解的神仙知识点 ...

  10. samba文件共享服务配置(multiuser机制)二 (共两节)

    smb客户端的multiuser挂载技术 --管理员只需要作一次挂载 --客户端在访问挂载点时,若需要不同权限,可临时切换新的共享用户[无需重新挂载] 实现方式 --挂载smb共享时启用multius ...