JS实现最短路径之弗洛伊德(Floyd)算法
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选。时间复杂度为O(n3),n为顶点数。
精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁

JS实现:
//定义邻接矩阵
let Arr2 = [
[0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535],
[1, 0, 3, 7, 5, 65535, 65535, 65535, 65535],
[5, 3, 0, 65535, 1, 7, 65535, 65535, 65535],
[65535, 7, 65535, 0, 2, 65535, 3, 65535, 65535],
[65535, 5, 1, 2, 0, 3, 6, 9, 65535],
[65535, 65535, 7, 65535, 3, 0, 65535, 5, 65535],
[65535, 65535, 65535, 3, 6, 65535, 0, 2, 7],
[65535, 65535, 65535, 65535, 9, 5, 2, 0, 4],
[65535, 65535, 65535, 65535, 65535, 65535, 7, 4, 0],
] let numVertexes = 9, //定义顶点数
numEdges = 15; //定义边数 // 定义图结构
function MGraph() {
this.vexs = []; //顶点表
this.arc = []; // 邻接矩阵,可看作边表
this.numVertexes = null; //图中当前的顶点数
this.numEdges = null; //图中当前的边数
}
let G = new MGraph(); //创建图使用 //创建图
function createMGraph() {
G.numVertexes = numVertexes; //设置顶点数
G.numEdges = numEdges; //设置边数 //录入顶点信息
for (let i = 0; i < G.numVertexes; i++) {
G.vexs[i] = 'V' + i; //scanf('%s'); //ascii码转字符 //String.fromCharCode(i + 65);
}
console.log(G.vexs) //打印顶点 //邻接矩阵初始化
for (let i = 0; i < G.numVertexes; i++) {
G.arc[i] = [];
for (j = 0; j < G.numVertexes; j++) {
G.arc[i][j] = Arr2[i][j]; //INFINITY;
}
}
console.log(G.arc); //打印邻接矩阵
} let Pathmatirx = []; //二维数组 表示顶点到顶点的最短路径权值和的矩阵
let ShortPathTable = []; //二维数组 表示对应顶点的最小路径的前驱矩阵 function Floyd() { let w, k;
for (let v = 0; v < G.numVertexes; ++v) { //初始化 Pathmatirx ShortPathTable
Pathmatirx[v] = [];
ShortPathTable[v] = [];
for (let w = 0; w < G.numVertexes; ++w) {
ShortPathTable[v][w] = G.arc[v][w];
Pathmatirx[v][w] = w;
}
} for (let k = 0; k < G.numVertexes; ++k) {
for (let v = 0; v < G.numVertexes; ++v) {
for (let w = 0; w < G.numVertexes; ++w) {
if (ShortPathTable[v][w] > (ShortPathTable[v][k] + ShortPathTable[k][w])) {
//如果经过下标为k顶点路径比原两点间路径更短,当前两点间权值设为更小的一个
ShortPathTable[v][w] = ShortPathTable[v][k] + ShortPathTable[k][w];
Pathmatirx[v][w] = Pathmatirx[v][k]; //路径设置经过下标为k的顶点
}
}
}
}
} function PrintAll() {
for (let v = 0; v < G.numVertexes; ++v) {
for (let w = v + 1; w < G.numVertexes; w++) {
console.log('V%d-V%d weight: %d', v, w, ShortPathTable[v][w]);
k = Pathmatirx[v][w];
console.log(' Path: %d', v);
while (k != w) {
console.log(' -> %d', k);
k = Pathmatirx[k][w];
}
console.log(' -> %d', w);
}
}
} createMGraph();
Floyd();
PrintAll();
运行结果:(结果太长只截取不分)

求最短路径的两个算法(迪杰斯特拉算法和弗洛伊德算法),对有向图依然有效,因为二者的差异仅仅是邻接矩阵是否对称而已
参考文献: 程杰 《大话设计模式》
JS实现最短路径之弗洛伊德(Floyd)算法的更多相关文章
- 最短路径 - 弗洛伊德(Floyd)算法
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- 最短路径:Dijkstra & Floyd 算法图解,c++描述
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 数据结构与算法——弗洛伊德(Floyd)算法
介绍 和 Dijkstra 算法一样,弗洛伊德(Floyd)算法 也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978 年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特 ...
- C# 弗洛伊德(Floyd)算法
弗洛伊德(Floyd)算法 主要是用于计算图中所有顶点对之间的最短距离长度的算法,如果是要求某一个特定点到图中所有顶点之间的最短距离可以用; ; ; ; ...
- [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...
- 弗洛伊德(Floyd)算法
#include <stdio.h> #define MAXVEX 20 //最大顶点数 #define INFINITY 65535 //∞ typedef struct {/* 图结构 ...
- [hihoCoder] #1089 : 最短路径·二:Floyd算法
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间 ...
- 算法:最短路径之弗洛伊德(Floyd)算法
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是 ...
随机推荐
- Zipper(动态规划)
点击打开链接 描述 Given three strings, you are to determine whether the third string can be formed by combin ...
- yield 学习
什么是生成器 生成器是可以迭代的,但是你只可以读取它一次 ,因为它并不把所有的值放在内存中,它是实时地生成数据. yield 理解 通常的for...in...循环中,in后面是一个数组,这个数组就是 ...
- jmeter进行https协议的测试
一.HTTPS和HTTP的区别 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息.HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和 ...
- 为IEnumerable类型添加Add方法
IEnumerable类型原生是没有Add方法的,你可以用Contact方法去为它添加元素, 1 items = items.Concat(new[] { "foo" }); 也可 ...
- nginx之重写
rewrite可以写在server段.location段和if段.语法: rewrite regexp replacement [flag] flag是标记.有4种标记,它们的作用如下表. flag ...
- day 11课后作业
# -*- coding: utf-8 -*-# @Time : 2019/1/3 20:03# @Author : Endless-cloud# @Site : # @File : day 11 课 ...
- Xcode括号自动补全以及二次编译后不显示输入
今天遇到了一个大坑,在使用栈来进行计算表达式的时候,发现输入括号就报错,以及二次编译后不显示. 测试了好久,经过无数次debug后. 二次编译不显示还是没搞明白,不过输入倒是没什么问题,就是不显示出来 ...
- float数据在内存中存储方式
float类型数字在计算机中用4个字节存储.遵循IEEE-754格式标准: 一个浮点数有3部分组成: 符号部分,0 表示正,1表示负. 底数部分 使用二进制数来表示此浮点数的实际值,底数部分实际是占用 ...
- 【APUE】第3章 文件I/O (1)
1.文件描述符 对于内核来说,所有打开的文件都通过文件描述符来引用.文件描述符是一个非负整数.当打开一个现有的文件或者创建一个新文件时,内核向进程返回一个文件描述符.当读.写一个文件时,使用open或 ...
- VUE源代码调试方法
前两条出自: https://link.zhihu.com/?target=http%3A//www.orzzone.com/vuejs-project-debug.html https://www. ...