【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)

题面

BZOJ

洛谷

Description

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个

正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路

(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2

×2个区域,包括3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期

间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海

拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则

不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路

所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交

叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在

最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最

小值。

Input

第一行包含一个整数n,含义如上文所示。接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个

方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到

南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人

流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

Output

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结

果四舍五入到整数。

Sample Input

1

1

2

3

4

5

6

7

8

Sample Output

3

题解

很明显的,每个位置的海拔一定是\(0/1\)

所以就是一个裸的最小割

另外,不难发现\(0/1\)一定是两个联通块

还是一个裸的最小割

因为范围比较大

转成对偶图求最短路即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2222222
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next,w;}e[6666666];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >Q;
pair<int,int> u;
int dis[MAX],T;
bool vis[MAX];
int Dijkstra(int S)
{
Q.push(make_pair(0,S));
while(!Q.empty())
{
u=Q.top();Q.pop();
if(vis[u.second])continue;
dis[u.second]=u.first;vis[u.second]=true;
for(int i=h[u.second];i;i=e[i].next)
if(!vis[e[i].v])Q.push(make_pair(u.first+e[i].w,e[i].v));
}
return dis[T];
}
int p[2222][1111],tot;
int n,m,S;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
p[i][j]=++tot;
S=0;T=tot+1;
for(int i=1;i<=n;++i)p[i][0]=p[n+1][i]=S,p[0][i]=p[i][n+1]=T;
for(int i=1;i<=n+1;++i)
for(int j=1;j<=n;++j)
Add(p[i][j],p[i-1][j],read());
for(int i=1;i<=n;++i)
for(int j=1;j<=n+1;++j)
Add(p[i][j-1],p[i][j],read());
for(int i=1;i<=n+1;++i)
for(int j=1;j<=n;++j)
Add(p[i-1][j],p[i][j],read());
for(int i=1;i<=n;++i)
for(int j=1;j<=n+1;++j)
Add(p[i][j],p[i][j-1],read());
printf("%d\n",Dijkstra(0));
return 0;
}

【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)的更多相关文章

  1. 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status] ...

  2. 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...

  3. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  4. [NOI2010]海拔——最小割+对偶图

    题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...

  5. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

  6. [NOI2010]海拔(最小割)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  7. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  8. bzoj 1001 原图最小割转化为对偶图最短路

    题目大意: 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形 ...

  9. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  10. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

随机推荐

  1. iOS 关于权限设置的问题

      在info.plist文件下添加 <key>NSContactsUsageDescription</key>    <string>请求访问通讯录</st ...

  2. Django的简介

    一.MTV模型 Django的MTV模式: Model(模型):和数据库相关的.负责业务对象与数据库的对象(ORM) Template(,模板):放所有的HTML文件 模板语法:目的是将变量(数据库内 ...

  3. JS 中屏幕、浏览器和文档的高度、宽度和距离

    1.各种对象 window.screen - 屏幕,window - 窗口,document.documentElement & document.body.parentNode - 文档,d ...

  4. 3.5星|《算法霸权》:AI、算法、大数据在美国的阴暗面

    算法霸权 作者在华尔街对冲基金德绍集团担任过金融工程师,后来去银行做过风险分析,再后来去做旅游网站的用户分析.后来辞职专门揭露美国社会生活背后的各种算法的阴暗面. 书中提到的算法的技术缺陷,我归纳为两 ...

  5. PytorchZerotoAll学习笔记(二)--梯度下降之手动求导

    梯度下降算法:    待优化的损失值为 loss,那么我们希望预测的值能够很接近真实的值 y_pred ≍ y_label      我们的样本有n个,那么损失值可以由一下公式计算得出: 要使得los ...

  6. Tensorflow、Pytorch、Keras的多GPU使用

    Tensorflow.Pytorch.Keras的多GPU的并行操作 方法一 :使用深度学习工具提供的 API指定 1.1 Tesorflow tensroflow指定GPU的多卡并行的时候,也是可以 ...

  7. 3.hive的thriftserver服务

    1.ThiftServer介绍 正常的hive仅允许使用HiveQL执行查询.更新等操作,并且该方式比较笨拙单一.幸好Hive提供了轻客户端的实现,通过HiveServer或者HiveServer2, ...

  8. Scrum立会报告+燃尽图 04

    此作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2194 一.小组介绍 组长:王一可 组员:范靖旋,王硕,赵佳璐,范洪达,祁玉 ...

  9. dtd文件本地配置

    在struts包解压出来以后的地方找

  10. Python:字典操作总结

     字典是Python中唯一的映射类型 [注]:字典中数据是无序排放的 一.字典的创建方法 方法1:用大括号包裹键值对从而创建字典 addict={}#创建一个空字典 addict={key1:valu ...