摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

In mathematics, the rearrangement inequality[1] states that

{\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}

for every choice of real numbers

{\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}

and every permutation

{\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}

of x1, . . ., xn. If the numbers are different, meaning that

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

Proof[edit]

The lower bound follows by applying the upper bound to

{\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}

Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

{\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}

is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

{\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}

Therefore,

{\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}

Expanding this product and rearranging gives

{\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}

hence the permutation

{\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}

which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

If

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

Generalization[edit]

A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n} such that

{\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}

the inequality

{\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}

holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}[2].

Rearrangement inequality的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. cf536c——思路题

    题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...

  3. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  4. HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))

    ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 4611Balls Rearrangement(思维)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. Balls Rearrangement(HDU)

    Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...

  7. hdu4611 Balls Rearrangement

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...

  8. 2013 多校联合 2 A Balls Rearrangement (hdu 4611)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  9. MM bound 与 Jensen's inequality

    MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...

随机推荐

  1. IIC通讯程序

    IIC程序 IIC起始信号 void IIC_Start(void) { SDA_OUT();//sda设为输出 IIC_SDA=; IIC_SCL=; delay_us();//延时一段时间,具体时 ...

  2. windows环境下apache-apollo服务器搭建及发布订阅测试

    查证了一些资料之后,发现 apache-apollo服务器使用的人还是挺多的,资料也比较齐全,所以直接选择 apache-apollo了,具体性能如何,先用起来再说吧: 1.下载 apache-apo ...

  3. Python列表推导式和嵌套的列表推导式

    列表推导式提供了一个更简单的创建列表的方法.常见的用法是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表,或者通过满足某些特定条件元素来创建子序列. 例如,假设我们想创建一个平方 ...

  4. 经典教程|10 分钟速成 Python3

    Python 是由吉多·范罗苏姆(Guido Van Rossum)在 90 年代早期设计. 它是如今最常用的编程语言之一.它的语法简洁且优美,几乎就是可执行的伪代码. 注意:这篇教程是基于 Pyth ...

  5. Python os.makedirs() 方法

    os.makedirs() 方法用于递归创建目录.像 mkdir(), 但创建的所有intermediate-level文件夹需要包含子目录. 语法 makedirs()方法语法格式如下: os.ma ...

  6. 电脑提示‘您需要来自Administration的权限才能对此文件夹进行更改’怎么删除文件

    电脑提示'您需要来自Administration的权限才能对此文件夹进行更改'怎么删除文件 应该怎么做 win7系统需要定期删除一些无用的文件,扩大内存空间,但是在删除文件的时候弹出提示"您 ...

  7. MySQL case when 使用

    case when 自定义排序时的使用 根据 case when 新的 sort字段排序 case when t2.status = 4 and t2.expire_time>UNIX_TIME ...

  8. iPhone上的CPU架构,核数以及运行内存

    机型 CPU架构 CPU名 CPU位数 CPU核数 运行内存 iPhone 5 ARMv7s A6 32bit 双核 1G iPhone 5c ARMV7s A6 32bit 双核 1G iPhone ...

  9. Java 学习笔记 ------第五章 对象封装

    本章学习目标: 了解封装的概念与实现 定义类.构造函数与方法 使用方法重载与不定长度自变量 了解static方法 一.Java封装概念 在面向对象程式设计方法中,封装(英语:Encapsulation ...

  10. struts通配符*的使用

    <action name="user_*" class="com.wangcf.UserAction" method="{1}"> ...