Rearrangement inequality
摘抄自: https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof
In mathematics, the rearrangement inequality[1] states that
- {\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}
for every choice of real numbers
- {\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}
and every permutation
- {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}
of x1, . . ., xn. If the numbers are different, meaning that
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = n − i + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.
Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.
Proof[edit]
The lower bound follows by applying the upper bound to
- {\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}
Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which
- {\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}
is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.
We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now
- {\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}
Therefore,
- {\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}
Expanding this product and rearranging gives
- {\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}
hence the permutation
- {\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}
which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.
If
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.
Generalization[edit]
A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n}
such that
- {\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}
the inequality
- {\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}
holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}
[2].
Rearrangement inequality的更多相关文章
- INEQUALITY BOOKS
来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...
- cf536c——思路题
题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
- HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))
ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 4611Balls Rearrangement(思维)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- Balls Rearrangement(HDU)
Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...
- hdu4611 Balls Rearrangement
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...
- 2013 多校联合 2 A Balls Rearrangement (hdu 4611)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
随机推荐
- shell 参数
转:http://hi.baidu.com/ipvsadm/item/489d9e16460195ddbe9042ee linux中shell变量$#,$@,$0,$1,$2的含义解释 linux中s ...
- Selenium2+python自动化-操作浏览器基本方法
前言 从这篇开始,正式学习selenium的webdriver框架.我们平常说的 selenium自动化,其实它并不是类似于QTP之类的有GUI界面的可视化工具,我们要学的是webdriver框架的A ...
- jquery中国地图插件
插件下载地址: http://www.17sucai.com/preview/1266961/2018-09-18/map/js/jsMap-1.1.0.min.js jsMap 项目介绍 这是一个功 ...
- Zabbix部署-LNMP环境
原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...
- mtv网站架构模式适合企业网站应用吗?
mtv网站架构模式适合企业网站应用吗?有时候在思考这样一个问题. 从开发角度来说,本来mvc的进度慢了些,如果在数据库管理方面用sql的话,管理起来也不很方便.小企业网本来数据就不很多,也没什么太多安 ...
- Action Required: Please provide your Tax Identity Information - Amazon Seller Tax Identity Collection
Hello ***, Your selling privileges have been suspended because we have not received required tax i ...
- 每天一个linux命令集
linux命令汇总,装载来自: http://www.cnblogs.com/peida/category/309012.html
- php 通过curl上传图片
通过curl上传图片 PHP < 5.5: 使用 目前使用的php版本 7.1 测试无法使用 前面加@ 的方法上传文件 ,查找资料 使用 curl_setopt($ch,CURLOPT_SAFE ...
- 上午做的第一个安卓app
刚开始学习安卓开发,有好多不懂,好多快捷键不知道,好多文件也不知道是干什么用的,初学时的确会有很多烦恼,比如哪里又多一个空格也会报错,有时候错误很难看懂. 嘿嘿,一上午的功夫边学习边调代码,做出了我第 ...
- POJ 2484(对称博弈)
题目链接:http://poj.org/problem?id=2484 这道题目大意是这样的,有n个硬币围成一圈,两个人轮流开始取硬币(假设他们编号从1到n),可以选择取一枚或者取相邻的两枚(相邻是指 ...