Rearrangement inequality
摘抄自: https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof
In mathematics, the rearrangement inequality[1] states that
- {\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}
for every choice of real numbers
- {\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}
and every permutation
- {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}
of x1, . . ., xn. If the numbers are different, meaning that
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = n − i + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.
Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.
Proof[edit]
The lower bound follows by applying the upper bound to
- {\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}
Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which
- {\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}
is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.
We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now
- {\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}
Therefore,
- {\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}
Expanding this product and rearranging gives
- {\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}
hence the permutation
- {\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}
which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.
If
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.
Generalization[edit]
A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n}
such that
- {\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}
the inequality
- {\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}
holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}
[2].
Rearrangement inequality的更多相关文章
- INEQUALITY BOOKS
来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...
- cf536c——思路题
题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
- HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))
ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 4611Balls Rearrangement(思维)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- Balls Rearrangement(HDU)
Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...
- hdu4611 Balls Rearrangement
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...
- 2013 多校联合 2 A Balls Rearrangement (hdu 4611)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
随机推荐
- HTML5 + CSS3 实现地球绕太阳公转
使用的是正面视角,主要是用 HTML5 + CSS3 来实现,JS只是用来画图. test.html: <!DOCTYPE html> <html> <head> ...
- vue route.go 载入刷新
vue route 重新载入刷新: this.$router.go({path : 'path' , query: { param: this.param} })
- 003--MySQL 数据库事务
什么是事务? 事务是一组原子性的 SQL 查询, 或者说是一个独立的工作单元. 在事务内的语句, 要么全部执行成功, 要么全部执行失败. 事务的 ACID 性质 数据库事务拥有以下四个特性, 即 AC ...
- Python 日志记录与程序流追踪(基础篇)
日志记录(Logging) More than print: 每次用 terminal debug 时都要手动在各种可能出现 bug 的地方 print 相关信息来确认 bug 的位置: 每次完成 d ...
- presto——java.sql.SQLException: Error executing query与javax.net.ssl.SSLException: Unrecognized SSL message, plaintext connection?异常问题
使用presto的时候以mysql为presto的数据源 安装的presto是0.95版本:使用的presto-jdbc是0.202的,这里使用jdbc去访问时候,connection可以链接成功,但 ...
- Spark Shuffle之Hash Shuffle
源文件放在github,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/hash-sh ...
- so加载报错:dlopen failed: couldn't map ... Permission denied
转自:https://blog.csdn.net/u013270444/article/details/60869376 问题描述: 我的应用当中集成了一个安全相关的sdk,而这个sdk中使用的so是 ...
- c语言基础笔记
一 :数据类型 1.float类型,在输出的时候可以使用 .数字 来把浮点数精确到小数点后几位,比如 printf("%.3f",float)精确到小数点后三位,不足补0 2.字 ...
- set集合,深浅拷贝以及部分知识点补充
目录: 1.基础数据类型补充 2.set集合 3.深浅拷贝 一,基础数据类型补充 字符串的基本操作 li = ["李李嘉诚", "麻花藤", "⻩黄海 ...
- windows操作系统下载tomcat,并与eclipse进行整合
进入Tomcat官网之后,在左边我们看到,Tomcat的有6,7,8这三个最流行的版本,我们可以点击进去下载想要的版本. 进入里面之后,可以看见有64位的和32位的,就看自己的电脑是多少位的了,如果电 ...