摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

In mathematics, the rearrangement inequality[1] states that

{\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}

for every choice of real numbers

{\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}

and every permutation

{\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}

of x1, . . ., xn. If the numbers are different, meaning that

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

Proof[edit]

The lower bound follows by applying the upper bound to

{\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}

Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

{\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}

is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

{\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}

Therefore,

{\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}

Expanding this product and rearranging gives

{\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}

hence the permutation

{\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}

which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

If

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

Generalization[edit]

A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n} such that

{\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}

the inequality

{\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}

holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}[2].

Rearrangement inequality的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. cf536c——思路题

    题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...

  3. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  4. HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))

    ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 4611Balls Rearrangement(思维)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. Balls Rearrangement(HDU)

    Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...

  7. hdu4611 Balls Rearrangement

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...

  8. 2013 多校联合 2 A Balls Rearrangement (hdu 4611)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  9. MM bound 与 Jensen's inequality

    MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...

随机推荐

  1. localhost/127.0.0.1/本机IP的区别以及端口号

    端口号: http请求默认的端口是:80 PHPstudy中的端口号: Apache服务器的端口是:80 MySQL数据库的端口是:3306 PHP项目端口是:9000 禅道中的端口号: Apache ...

  2. Laxcus大数据操作系统单机集群版

    Laxcus大数据管理系统是我们Laxcus大数据实验室历时5年,全体系全功能设计研发的大数据产品,目前的最新版本是2.1版本.从三年前的1.0版本开始,Laxcus大数据系统投入到多个大数据和云计算 ...

  3. JS对字符串编码的几种方式

    函数 描述 encodeURI() 把字符串编码为 URI encodeURIComponent() 把字符串编码为 URI 组件 escape() 对字符串进行编码 上面是查询来自w3school的 ...

  4. spring JDBC 事务管理

    spring JDBC 事务管理 一.Spring 中的JDBC Spring中封装了JDBC的ORM框架,可以用它来操作数据,不需要再使用外部的OEM框架(MyBatis),一些小的项目用它. 步骤 ...

  5. Python基础灬序列(字符串、列表、元组)

    序列 序列是指它的成员都是有序排列,并且可以通过下标偏移量访问到它的一个或几个成员.序列包含字符串.列表.元组. 字符串 chinese_zodiac = '鼠牛虎兔龙蛇马羊猴鸡狗猪' print(c ...

  6. activemq 持久化

    转自: http://blog.csdn.net/kobejayandy/article/details/50736479 消息持久性的原理很简单,就是在发送者将消息发送出去后,消息中心首先将消息存储 ...

  7. lamp一键配置 --转自秋水

    https://teddysun.com/lamp LAMP一键安装脚本 最后修改于:2015年11月08日 / 秋水逸冰 / 54,300 次围观 973 本脚本适用环境: 系统支持:CentOS/ ...

  8. scrum立会报告+燃尽图(第三周第七次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2286 项目地址:https://coding.net/u/wuyy694 ...

  9. 冲刺ing-5

    第五次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 Leangoo的看板截图,燃尽图 蔺皓雯 编写博客 蔡晨旸 测试 曾茜 测试 鲁婧楠 测试 杨池宇 测试 成员遇到的问题 队员 问题 吴伟 ...

  10. mysql 对表格加索引但原表格有重复数据

    1.把表中唯一数据搜索创建临时表,最后代替原先表. create table mmmmmm as SELECT * FROM meriadianannotation GROUP BY SeriesID ...