题目大意:有一段$n(n\leqslant5\times10^3)$个点的折线,特殊点可以覆盖它以及它左边的它可以“看见”的点(“看见”指连线没有其他东西阻挡)。定义$f_{l,r}$为区间$[l,r]$最少需要的特殊点个数,求:$\sum\limits_{l=1}^n\sum\limits_{r=l}^nf_{l,r}$

题解:可以用斜率来判断是否可以看见。发现$r$一定要设一个关键点,而若一个极大区间$[l',r']$在$r$处看不见,那么一定要在$r'$或$r'+1$处设一个关键点,所以$f_{l,r}=1+\sum\limits_{l',r'}\min\{f_{l',r'},f_{l',r'+1}\}$($l',r'$即为上文说的极大看不见的区间)

但这样复杂度是$O(n^3)$,不能承受,发现固定了$r$后(固定$l$也行),那些看不见的区间是重复的,可以后缀处理(固定$l$就是前缀)。

卡点:开始$naive$的以为贪心就行了(原以为直接贪心选择$r'+1$即可,然后发现一个斜率降低的折线就挂了)

C++ Code:

#include <algorithm>
#include <cstdio>
#define maxn 5010
const double inf = 1e9; int n, ans;
int h[maxn], f[maxn][maxn];
inline double slope(int l, int r) {
if (l == r) return inf;
return (h[r] - h[l]) / static_cast<double> (r - l);
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", h + i);
for (int r = 1, sum, now; r <= n; ++r) {
ans ^= (sum = f[r][r] = 1);
now = r;
for (int l = r - 1; l; --l) {
if (slope(l, r) < slope(now, r)) {
sum += std::min(f[l + 1][now - 1], f[l + 1][now]);
now = l;
}
ans ^= (f[l][r] = sum + std::min(f[l][now - 1], f[l][now]));
}
}
printf("%d\n", ans);
return 0;
}

  

[洛谷P4563][JXOI2018]守卫的更多相关文章

  1. 洛谷P4563 [JXOI2018]守卫(dp)

    题意 题目链接 Sol 非常有意思的题目. 我们设\(f[l][r]\)表示区间\([l,r]\)的答案. 显然\(r\)位置一定有一个保镖 同时不难观察到一个性质:拿\([1, n]\)来说,设其观 ...

  2. 洛谷P1263 宫廷守卫

    P1263 宫廷守卫 题目描述 从前有一个王国,这个王国的城堡是一个矩形,被分为M×N个方格.一些方格是墙,而另一些是空地.这个王国的国王在城堡里设了一些陷阱,每个陷阱占据一块空地. 一天,国王决定在 ...

  3. 【BZOJ2763/洛谷p4563】【分层图最短路】飞行路线

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4630  Solved: 1797[Submit][Stat ...

  4. 洛谷 P1263 宫廷守卫

    被这道题折腾了 \(2\) 个小时. 按照题意,每个守卫的上下左右四个方向上应当都是墙,而不能出现其他的守卫. 如图是一个合法的放置方案.每个守卫四个方向上都是墙(包括宫廷外墙). 如图是一个非法的放 ...

  5. 洛谷P4561 [JXOI2018]排序问题(二分 期望)

    题意 题目链接 Sol 首先一种方案的期望等于它一次排好的概率的倒数. 一次排好的概率是个数数题,他等于一次排好的方案除以总方案,也就是\(\frac{\prod cnt_{a_i}!}{(n+m)! ...

  6. 洛谷P4562 [JXOI2018]游戏(组合数学)

    题意 题目链接 Sol 这个题就比较休闲了. \(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下. 设没有约数的数的个数有\(cnt\)个 因此总的方案为\(\sum_{i=c ...

  7. 洛谷P4562 [JXOI2018]游戏 数论

    正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...

  8. 【BZOJ5324】[JXOI2018]守卫(动态规划)

    [BZOJ5324][JXOI2018]守卫(动态规划) 题面 BZOJ 洛谷 题解 既然只能看到横坐标在左侧的点,那么对于任意一个区间\([l,r]\)而言,\(r\)必须被选. 假设\(r\)看不 ...

  9. [JXOI2018]守卫

    嘟嘟嘟 正如某题解所说,这题很有误导性:我就一直在想凸包. 随便一个数据,就能把凸包hack掉: 这样我们的点G就gg了. 所以正解是什么呢?dp. 题解看这位老哥的吧,我感觉挺好懂的:题解 P456 ...

随机推荐

  1. pandaboard es 制作SD启动卡OMAP4460

    1. 本次使用的是chipsee的板子,带屏幕的,先把资料传到Ubuntu的共享目录下 2. 进入共享目录 /mnt/hgfs/ubuntu_share/pandboard_es_linux# 3. ...

  2. PL/SQL编辑数据"这些查询结果不可更新,请包括ROWID或使用SELECT...FOR UPDATE获得可更新结果"处理

    只要有人用了: select t.* from 表名  t where 字段=xxx  for update 而不是: select t.rowid,t.* from 表名  t where 字段=x ...

  3. [转]WIN2008 IIS7的日期格式

    最近项目升级服务器从32位升级到64位的WIN2008,日期显示格式非我们所期望的yyyy-M-d格式,原以为修改控制面板的日期格式即可,可是不行. 修改注册表问题解决. 修改方法: 运行注册表编辑器 ...

  4. stl源码分析之priority queue

    前面两篇介绍了gcc4.8的vector和list的源码实现,这是stl最常用了两种序列式容器.除了容器之外,stl还提供了一种借助容器实现特殊操作的组件,谓之适配器,比如stack,queue,pr ...

  5. Python+MySQL开发医院网上预约系统(课程设计)二

    ---恢复内容开始--- 1:报错 1.1.创建表时报错 CREATE TABLE Admin (        A_ID VARCHAR(20) NOT NULL AUTO_INCREMENT, p ...

  6. [T-ARA/筷子兄弟][Little Apple]

    歌词来源:http://music.163.com/#/song?id=29753511 作曲 : 筷子兄弟 [作曲 : 筷子兄弟] 作词 : K-Smith [作词 : KSmith] 编曲 : 新 ...

  7. spring mvc 详细配置

    转自: http://www.cnblogs.com/superjt/p/3309255.html 现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是 ...

  8. MathExamV2.0四则混合运算计算题生成器

    MathExamV2.0四则混合运算计算题生成器----211606360 丁培晖 211606343 杨宇潇 一.预估与实际 PSP2.1 Personal Software Process Sta ...

  9. c# 消息机制篡改

    1.背景介绍: c#程序想要针对某个的消息进行别的行为.例如:窗体不可拖动. 2.应用函数WinProc 以窗口不可拖动举例: const int WM_NCLBUTTONDOWN = 0x00A1; ...

  10. UI分析之石家庄铁道大学官网

    点击进入石家庄铁道大学的官方网站,首先映入眼帘的是“石家庄铁道大学”七个大字,配以蓝色背景和学校的俯瞰图,给人一种严谨又不失清新的感觉. 学校的网站首页界面主要有九个界面,分别是网站首页,学校概况,组 ...