pkusc 快到了……做点题涨涨 rp。

ref我好菜啊QAQ。


可以发现期望只是一个幌子。我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 \(k\) 张牌,他们能造成的伤害的和是多少。

显然的是,能打强化就打强化(不过你好歹也要攻击一张)。记 \(m\) 张卡中分给强化卡的数量为 \(i\)。我们枚举 \(i\),根据 \(i\) 与 \(k\) 的大小关系来决定怎样打牌。

那么 \(i < k\) 时,就打出 \(i\) 张强化卡,\(k-i\) 张攻击卡。(这意味着你能打的强化卡总共才 \(i\) 张,当然是能打强化卡就打强化卡)

\(i \geq k-1\) 时,就打出 \(k-1\) 张强化卡,\(1\) 张攻击卡。(这意味着你能打的强化卡还挺多,留一张攻击就行了)。

记 \(F(i,j)\) 为分给强化卡的数量为 \(i\),打出 \(j\) 张,所有方案翻的倍率的和。\(G(i,j)\) 为分给攻击卡的数量为 \(i\),打出 \(j\) 张,所有方案的(不加强化的)攻击力和。

两者分别对应 \(F(i,i) \times G(m-i,k-i)\) 和 \(F(i,k-1) \times G(m-i,1)\)。为什么可以是这种“和乘和”的形式呢?因为乘法分配律。


现在的问题变成快速计算 \(F\) 和 \(G\)。

关于 \(F\),可以 sort 以后定义一个 \(f\),\(f(i,j)\) 表示(注意是选,不是分)了 \(i\) 张强化牌且最这 \(i\) 张牌中位置靠前的那张牌是所有强化牌中的第 \(j\) 个,这样的所有方案翻的倍率的和。转移看代码。\(G\) 和 \(g\) 也类似。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int mod=998244353;
int T, n, m, k, a[1505], b[1505], c[3005][3005], f[1505][1505];
int g[1505][1505], sum[1505];
int F(int x, int y){
if(x<y) return 0;
if(!y) return c[n][x];
int re=0;
for(int j=x-y+1; j<=n-y+1; j++)
re = (re + (ll)f[y][j]*c[j-1][x-y]%mod) % mod;
//感性理解一下……大概就是把x-y张不打出的牌放到j前头,这里我讲不太清QAQ
return re;
}
int G(int x, int y){
if(x<y) return 0;
int re=0;
for(int j=x-y+1; j<=n-y+1; j++)
re = (re + (ll)g[y][j]*c[j-1][x-y]%mod) % mod;
return re;
}
int main(){
cin>>T;
for(int i=0; i<=3000; i++){
c[i][0] = 1;
for(int j=1; j<=i; j++)
c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
}
while(T--){
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
scanf("%d %d %d", &n, &m, &k);
for(int i=1; i<=n; i++) scanf("%d", &a[i]);
for(int i=1; i<=n; i++) scanf("%d", &b[i]);
sort(a+1, a+1+n);//跟牌的顺序无关,可以sort
sort(b+1, b+1+n);
for(int i=1; i<=n; i++){
f[1][i] = a[i];//初始化f[][],显然只选1张的倍率之和是a[i]
sum[i] = (sum[i-1] + a[i]) % mod;//前缀和,方便转移
}
for(int i=2; i<=n; i++){
for(int j=1; j<=n-i+1; j++)
f[i][j] = (ll)a[j] * (sum[n]-sum[j]+mod) % mod;
//打了i张牌,最前头的是第j张,那它就是f[i-1][j+1..n]的和再乘上第j号元素。这个转移的思想是枚举在打了i-1张牌的时候最前头的是哪一张
for(int j=1; j<=n; j++)
sum[j] = (sum[j-1] + f[i][j]) % mod;
}
for(int i=1; i<=n; i++){
g[1][i] = b[i];
sum[i] = (sum[i-1] + b[i]) % mod;
}
for(int i=2; i<=n; i++){
for(int j=1; j<=n-i+1; j++)
g[i][j] = ((ll)b[j]*c[n-j][i-1]%mod+(sum[n]-sum[j]+mod)%mod) % mod;
//打了i张牌,最前头的是第j张。注意g代表的是(不加强化的)攻击力和。在这种情况下,打了i-1张牌的总情况是c[n-j][i-1]种(j+1..n中选i-1个的方案数),这是第一项;第二项就是继承自g[i-1][j+1..n]
for(int j=1; j<=n; j++)
sum[j] = (sum[j-1] + g[i][j]) % mod;
}
int ans=0;
for(int i=0; i<m; i++)
if(i<k) ans = (ans + (ll)F(i,i)*G(m-i,k-i)%mod) % mod;
else ans = (ans + (ll)F(i,k-1)*G(m-i,1)%mod) % mod;
printf("%d\n", ans);
}
return 0;
}

loj2538 「PKUWC 2018」Slay the Spire的更多相关文章

  1. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  2. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  5. 【loj2538】 【PKUWC 2018】Slay the Spire dp

    我们不难发现,假设抽了x张攻击牌,y张强化牌,那么肯定是打出尽可能多张的强化牌后,再开始出攻击牌(当然最少要一张攻击牌) 我们设G(i,j)表示:所有(抽到的攻击牌牌数为i,打出的攻击牌牌数为j)的方 ...

  6. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  7. 「PKUWC 2018」Minimax

    传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...

  8. loj2540 「PKUWC 2018」随机算法

    pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...

  9. 「PKUWC 2018」随机算法 (第二版,正解做法)

    上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分.... 第一次做的时候光想练一练暴力...就没去想正解,谁知道正解比暴力好写不知道多少,mmp 设 f(S) 为 选集合S中的点可 ...

随机推荐

  1. 以整数元素构成的list中的数字组成最小整数

    问题 把一个int型数组中的数字拼成一个串,这个串代表的数字最小. 思路说明 不同角度,对原题理解有所不同.我依照以下的理解方式求解. 对这个问题的理解: 有一个元素是int类型的list: 将上述l ...

  2. JavaScript脚本的执行原理?

    JavaScript是一种动态.弱类型.基于原型的语言,通过浏览器可以直接执行. 当浏览器遇到\<script>标记的时候,浏览器会执行之间的JavaScript代码.嵌入的js代码是顺序 ...

  3. 【php】php与mysql初体验

    第一次体验在web站点上使用MySQL数据库,遇到了很多问题,总结如下: 1.安装XAMPP软件后,将文件放到hotdocs文件夹下,要访问其中的文件,使用localhost/XXX/XXX ,路径要 ...

  4. 3、Dubbo-环境搭建

    官方推荐使用 Zookeeper 注册中心 3.1).[windows]-安装zookeeper 开发中均在Linux中安装!!! 1.下载zookeeper 网址 https://archive.a ...

  5. android实现静默安装demo

    1.须要RootTools.jar 2.运行脚本 public class InstallerActivity extends Activity {     /** Called when the a ...

  6. 解决Js跨域访问的问题

    1,最近有个需求,用Js获取Html标签<input type="file"/>的路径!遇到代码拒绝访问,提示安全验证,不允许跨域访问,简单的设置一下浏览器即可,不过对 ...

  7. vue.js数组追加合并与对象追加合并的

    今天在做懒加载的时候遇到的问题,在网上搜索找到的答案不是很清晰,就来写一下,方便以后使用. 直接上图吧 官方连接:https://cn.vuejs.org/v2/guide/reactivity.ht ...

  8. K3CLOUD开发-动态表单树形单据体实现银行交易对账

    背景:系统手机开单生成销售单据,通过银行pos机收款,系统收款流水与银行流水可能存在差异,所以通过获取银行接口,获取消费信息自动插入到生产系统数据库,开发对账报表,实现差异汇总! 展示效果如下: 开发 ...

  9. sign

    sign字段构成:登录类型(2Bytes) + userid(不定长,最长10Bytes,用户id或设备id) + time(10Bytes) + token(32Bytes).其中:token = ...

  10. Security 安全框架1

    security 过滤器链 检查请求是否有请求信息-主要校验规则 UsernamePasswordAuthenticationFilter: 处理表单登录, 请求是否带用户名密码 BasicAuthe ...