人脸识别引擎SeetaFaceEngine中Identification模块用于比较两幅人脸图像的相似度,以下是测试代码:

int test_recognize()
{
	const std::string path_images{ "E:/GitCode/Face_Test/testdata/recognization/" };
	seeta::FaceDetection detector("E:/GitCode/Face_Test/src/SeetaFaceEngine/FaceDetection/model/seeta_fd_frontal_v1.0.bin");
	seeta::FaceAlignment alignment("E:/GitCode/Face_Test/src/SeetaFaceEngine/FaceAlignment/model/seeta_fa_v1.1.bin");
	seeta::FaceIdentification face_recognizer("E:/GitCode/Face_Test/src/SeetaFaceEngine/FaceIdentification/model/seeta_fr_v1.0.bin");

	detector.SetMinFaceSize(20);
	detector.SetMaxFaceSize(200);
	detector.SetScoreThresh(2.f);
	detector.SetImagePyramidScaleFactor(0.8f);
	detector.SetWindowStep(4, 4);

	std::vector<std::vector<seeta::FacialLandmark>> landmards;

	// detect and alignment
	for (int i = 0; i < 20; i++) {
		std::string image = path_images + std::to_string(i) + ".jpg";
		//fprintf(stderr, "start process image: %s\n", image.c_str());

		cv::Mat src_ = cv::imread(image, 1);
		if (src_.empty()) {
			fprintf(stderr, "read image error: %s\n", image.c_str());
			continue;
		}

		cv::Mat src;
		cv::cvtColor(src_, src, CV_BGR2GRAY);

		seeta::ImageData img_data;
		img_data.data = src.data;
		img_data.width = src.cols;
		img_data.height = src.rows;
		img_data.num_channels = 1;

		std::vector<seeta::FaceInfo> faces = detector.Detect(img_data);
		if (faces.size() == 0) {
			fprintf(stderr, "%s don't detect face\n", image.c_str());
			continue;
		}

		// Detect 5 facial landmarks: two eye centers, nose tip and two mouth corners
		std::vector<seeta::FacialLandmark> landmard(5);
		alignment.PointDetectLandmarks(img_data, faces[0], &landmard[0]);

		landmards.push_back(landmard);

		cv::rectangle(src_, cv::Rect(faces[0].bbox.x, faces[0].bbox.y,
			faces[0].bbox.width, faces[0].bbox.height), cv::Scalar(0, 255, 0), 2);

		for (auto point : landmard) {
			cv::circle(src_, cv::Point(point.x, point.y), 2, cv::Scalar(0, 0, 255), 2);
		}

		std::string save_result = path_images + "_" + std::to_string(i) + ".jpg";
		cv::imwrite(save_result, src_);
	}

	int width = 200;
	int height = 200;
	cv::Mat dst(height * 5, width * 4, CV_8UC3);
	for (int i = 0; i < 20; i++) {
		std::string input_image = path_images + "_" + std::to_string(i) + ".jpg";
		cv::Mat src = cv::imread(input_image, 1);
		if (src.empty()) {
			fprintf(stderr, "read image error: %s\n", input_image.c_str());
			return -1;
		}

		cv::resize(src, src, cv::Size(width, height), 0, 0, 4);
		int x = (i * width) % (width * 4);
		int y = (i / 4) * height;
		cv::Mat part = dst(cv::Rect(x, y, width, height));
		src.copyTo(part);
	}
	std::string output_image = path_images + "result_alignment.png";
	cv::imwrite(output_image, dst);

	// crop image
	for (int i = 0; i < 20; i++) {
		std::string image = path_images + std::to_string(i) + ".jpg";
		//fprintf(stderr, "start process image: %s\n", image.c_str());

		cv::Mat src_img = cv::imread(image, 1);
		if (src_img.data == nullptr) {
			fprintf(stderr, "Load image error: %s\n", image.c_str());
			return -1;
		}

		if (face_recognizer.crop_channels() != src_img.channels()) {
			fprintf(stderr, "channels dismatch: %d, %d\n", face_recognizer.crop_channels(), src_img.channels());
			return -1;
		}

		// ImageData store data of an image without memory alignment.
		seeta::ImageData src_img_data(src_img.cols, src_img.rows, src_img.channels());
		src_img_data.data = src_img.data;

		// Create a image to store crop face.
		cv::Mat dst_img(face_recognizer.crop_height(), face_recognizer.crop_width(), CV_8UC(face_recognizer.crop_channels()));
		seeta::ImageData dst_img_data(dst_img.cols, dst_img.rows, dst_img.channels());
		dst_img_data.data = dst_img.data;
		// Crop Face
		face_recognizer.CropFace(src_img_data, &landmards[i][0], dst_img_data);

		std::string save_image_name = path_images + "crop_" + std::to_string(i) + ".jpg";
		cv::imwrite(save_image_name, dst_img);
	}

	dst = cv::Mat(height * 5, width * 4, CV_8UC3);
	for (int i = 0; i < 20; i++) {
		std::string input_image = path_images + "crop_" + std::to_string(i) + ".jpg";
		cv::Mat src_img = cv::imread(input_image, 1);
		if (src_img.empty()) {
			fprintf(stderr, "read image error: %s\n", input_image.c_str());
			return -1;
		}

		cv::resize(src_img, src_img, cv::Size(width, height), 0, 0, 4);
		int x = (i * width) % (width * 4);
		int y = (i / 4) * height;
		cv::Mat part = dst(cv::Rect(x, y, width, height));
		src_img.copyTo(part);
	}
	output_image = path_images + "result_crop.png";
	cv::imwrite(output_image, dst);

	// extract feature
	int feat_size = face_recognizer.feature_size();
	if (feat_size != 2048) {
		fprintf(stderr, "feature size mismatch: %d\n", feat_size);
		return -1;
	}

	float* feat_sdk = new float[feat_size * 20];

	for (int i = 0; i < 20; i++) {
		std::string input_image = path_images + "crop_" + std::to_string(i) + ".jpg";
		cv::Mat src_img = cv::imread(input_image, 1);
		if (src_img.empty()) {
			fprintf(stderr, "read image error: %s\n", input_image.c_str());
			return -1;
		}

		cv::resize(src_img, src_img, cv::Size(face_recognizer.crop_height(), face_recognizer.crop_width()));

		// ImageData store data of an image without memory alignment.
		seeta::ImageData src_img_data(src_img.cols, src_img.rows, src_img.channels());
		src_img_data.data = src_img.data;

		// Extract feature
		face_recognizer.ExtractFeature(src_img_data, feat_sdk + i * feat_size);
	}

	float* feat1 = feat_sdk;
	// varify(recognize)
	for (int i = 1; i < 20; i++) {
		std::string image = std::to_string(i) + ".jpg";
		float* feat_other = feat_sdk + i * feat_size;

		// Caculate similarity
		float sim = face_recognizer.CalcSimilarity(feat1, feat_other);
		fprintf(stdout, "0.jpg -- %s similarity: %f\n", image.c_str(), sim);
	}

	delete[] feat_sdk;

	return 0;
}

从网上找了20张图像,前19张为周星驰,最后一张为汤唯,用于测试此模块,测试结果如下:

detect/alignment结果如下:

crop结果如下:

取上图中最左上图为标准图,与其它19幅图作验证,测试结果如下:

GitHubhttps://github.com/fengbingchun/Face_Test

人脸识别引擎SeetaFaceEngine中Identification模块使用的测试代码的更多相关文章

  1. 人脸识别引擎SeetaFaceEngine中Alignment模块使用的测试代码

    人脸识别引擎SeetaFaceEngine中Alignment模块用于检测人脸关键点,包括5个点,两个眼的中心.鼻尖.两个嘴角,以下是测试代码: int test_alignment() { std: ...

  2. 人脸识别引擎SeetaFaceEngine中Detection模块使用的测试代码

    人脸识别引擎SeetaFaceEngine中Detection模块用于人脸检测,以下是测试代码: int test_detection() { std::vector<std::string&g ...

  3. 人脸识别引擎SeetaFaceEngine简介及在windows7 vs2013下的编译

    SeetaFaceEngine是开源的C++人脸识别引擎,无需第三方库,它是由中科院计算所山世光老师团队研发.它的License是BSD-2. SeetaFaceEngine库包括三个模块:人脸检测( ...

  4. 【计算机视觉】SeetaFace Engine开源C++人脸识别引擎

    SeetaFace Engine是一个开源的C++人脸识别引擎,它可以在不依赖第三方的条件下载CPU上运行.他包含三个关键部分,即:SeetaFace Detection,SeetaFace Alig ...

  5. Android打开相机进行人脸识别,使用虹软人脸识别引擎

    上一张效果图,渣画质,能看就好 功能说明: 人脸识别使用的是虹软的FreeSDK,包含人脸追踪,人脸检测,人脸识别,年龄.性别检测功能,其中本demo只使用了FT和FR(人脸追踪和人脸识别),封装了开 ...

  6. 教你如何认识人脸识别开发套件中的双目摄像、3D结构光摄像头、单目摄像头的区别及详细讲解

    深圳市宁远电子提供的人脸识别模组可支持双目摄像头和3D结构光摄像头,在客户咨询中经常有被问到双目的为什么会比单目的成本高,区别在哪里,他们的适用于哪些场景呢?在此,深圳市宁远电子技术工程师就为大家详细 ...

  7. 关于人脸识别引擎FaceRecognitionDotNet的实例

    根据我上篇文章的分享,我提到了FaceRecognitionDotNet,它是python语言开发的一个项目face_recognition移植.结果真是有喜有忧,喜的是很多去关注了,进行了下载,我看 ...

  8. 人脸识别引擎SeetaFace编译 ubuntu

    00.SeetaFace简介 SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU ...

  9. .NET的关于人脸识别引擎分享(C#)

    https://www.cnblogs.com/RainbowInTheSky/p/10247921.html

随机推荐

  1. Redux 源码解读 —— 从源码开始学 Redux

    已经快一年没有碰过 React 全家桶了,最近换了个项目组要用到 React 技术栈,所以最近又复习了一下:捡起旧知识的同时又有了一些新的收获,在这里作文以记之. 在阅读文章之前,最好已经知道如何使用 ...

  2. JavaScript的DOM_通过计算后样式来获取

    虽然可以通过 style 来获取单一值的 CSS 样式,但对于复合值的样式信息,就需要通过计算样式来获取. DOM2 级样式,window 对象下提供了 getComputedStyle()方法.接受 ...

  3. Guava包学习--EventBus

    之前没用过这个EventBus,然后看了一下EventBus的源码也没看明白,(-__-)b.反正大概就是弄一个优雅的方式实现了观察者模式吧.慢慢深入学习一下. 观察者模式其实就是生产者消费者的一个变 ...

  4. 关于Mysql查询varchar类型错误问题

    因为后台所有表ID都是按照雪花算法生成的18位数字,需要对接到Android,Ios和H5,此时H5会出现字符超长溢出,所以直接把ID改为varchar类型. 如我的一张表ID为varchar(18) ...

  5. 【[ZJOI2012]灾难】

    好像很久之前就看过这道题,大概是刚学\(LCA\)的时候 之后当时肯定是不会的呀 现在发现这道题并不是非常难 首先我们发现这个灭绝的关系非常像一棵树,我们建出这个灭绝树求一个前缀和就可以啦 那么应该怎 ...

  6. [TEST123] Performance Test

    https://blog.csdn.net/zhouping19851013/article/details/82870789 https://www.cnblogs.com/jackei/archi ...

  7. Java性能监控

    Java性能监控 上次介绍了如何使用jvisualvm监控java,今天做进一步讲解!Java性能监控主要关注CPU.内存和线程. 在线程页中,点击线程Dump,可以生成threaddump日志,通过 ...

  8. 基于MySql数据库的单表与多表联合查询

    这里以学生 班级 身份证 以及课程为例 1,启动MySql数据库  开启服务 2.1.0新建一张班级表 备注:CHARSET = UTF8 (指定编码格式为utf8 防止中文乱码) /*班级表*/ C ...

  9. JavaScript互斥锁案例

    朋友今天问起来关于JS中多个函数共享同一个全局变量时,顺序调用执行的函数,前者修改了全局变量值,后调用的函数访问时却为undefined. 前不久开发项目过程中,队友也遇到了同样的问题,索性就写份博客 ...

  10. 关于keil不同容量和不同引脚大小的编译以及下载出错问题

    如果遇到这个问题一般可能有四个原因(以STM32F103C8T6为例) 1.芯片型号没有选对 2.startup文件可能没有选对,startup文件常用的分为3种,startup_stm32f10x_ ...