日志采集框架Flume
前言
在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便捷的开源框架,如图所示:
1. 日志采集框架Flume
1.1 Flume介绍
1.1.1 概述
u Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
u Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中
u 一般的采集需求,通过对flume的简单配置即可实现
u Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景
1.1.2 运行机制
1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成
2、 每一个agent相当于一个数据传递员[M1] ,内部有三个组件:
a) Source:采集源,用于跟数据源对接,以获取数据
b) Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据
c) Channel:angent内部的数据传输通道,用于从source将数据传递到sink
1.1.4 Flume采集系统结构图
1. 简单结构
单个agent采集数据
2. 复杂结构
多级agent之间串联
1.2 Flume实战案例
1.2.1 Flume的安装部署
1、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境
上传安装包到数据源所在节点上
然后解压 tar -zxvf apache-flume-1.6.0-bin.tar.gz
然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME
2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
3、指定采集方案配置文件,在相应的节点上启动flume agent
先用一个最简单的例子来测试一下程序环境是否正常
1、先在flume的conf目录下新建一个文件
vi netcat-logger.conf
# 定义这个agent中各组件的名字 a1.sources = r1 a1.sinks = k1 a1.channels = c1 # 描述和配置source组件:r1 a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # 描述和配置sink组件:k1 a1.sinks.k1.type = logger # 描述和配置channel组件,此处使用是内存缓存的方式 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # 描述和配置source channel sink之间的连接关系 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
2、启动agent去采集数据
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console |
-c conf 指定flume自身的配置文件所在目录
-f conf/netcat-logger.con 指定我们所描述的采集方案
-n a1 指定我们这个agent的名字
3、测试
先要往agent采集监听的端口上发送数据,让agent有数据可采
随便在一个能跟agent节点联网的机器上
telnet anget-hostname port (telnet localhost 44444)
1.2.2 采集案例
1、采集目录到HDFS
采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
根据需求,首先定义以下3大要素
l 采集源,即source——监控文件目录 : spooldir
l 下沉目标,即sink——HDFS文件系统 : hdfs sink
l source和sink之间的传递通道——channel,可用file channel 也可以用内存channel
配置文件编写:
#定义三大组件的名称 agent1.sources = source1 agent1.sinks = sink1 agent1.channels = channel1 # 配置source组件 agent1.sources.source1.type = spooldir agent1.sources.source1.spoolDir = /home/hadoop/logs/ agent1.sources.source1.fileHeader = false #配置拦截器 agent1.sources.source1.interceptors = i1 agent1.sources.source1.interceptors.i1.type = host agent1.sources.source1.interceptors.i1.hostHeader = hostname # 配置sink组件 agent1.sinks.sink1.type = hdfs agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M agent1.sinks.sink1.hdfs.filePrefix = access_log agent1.sinks.sink1.hdfs.maxOpenFiles = 5000 agent1.sinks.sink1.hdfs.batchSize= 100 agent1.sinks.sink1.hdfs.fileType = DataStream agent1.sinks.sink1.hdfs.writeFormat =Text agent1.sinks.sink1.hdfs.rollSize = 102400 agent1.sinks.sink1.hdfs.rollCount = 1000000 agent1.sinks.sink1.hdfs.rollInterval = 60 #agent1.sinks.sink1.hdfs.round = true #agent1.sinks.sink1.hdfs.roundValue = 10 #agent1.sinks.sink1.hdfs.roundUnit = minute agent1.sinks.sink1.hdfs.useLocalTimeStamp = true # Use a channel which buffers events in memory agent1.channels.channel1.type = memory agent1.channels.channel1.keep-alive = 120 agent1.channels.channel1.capacity = 500000 agent1.channels.channel1.transactionCapacity = 600 # Bind the source and sink to the channel agent1.sources.source1.channels = channel1 agent1.sinks.sink1.channel = channel1 |
Channel参数解释:
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
keep-alive:event添加到通道中或者移出的允许时间
2、采集文件到HDFS
采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs
根据需求,首先定义以下3大要素
l 采集源,即source——监控文件内容更新 : exec ‘tail -F file’
l 下沉目标,即sink——HDFS文件系统 : hdfs sink
l Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel
配置文件编写:
agent1.sources = source1 agent1.sinks = sink1 agent1.channels = channel1 # Describe/configure tail -F source1 agent1.sources.source1.type = exec agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log agent1.sources.source1.channels = channel1 #configure host for source agent1.sources.source1.interceptors = i1 agent1.sources.source1.interceptors.i1.type = host agent1.sources.source1.interceptors.i1.hostHeader = hostname # Describe sink1 agent1.sinks.sink1.type = hdfs #a1.sinks.k1.channel = c1 agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M agent1.sinks.sink1.hdfs.filePrefix = access_log agent1.sinks.sink1.hdfs.maxOpenFiles = 5000 agent1.sinks.sink1.hdfs.batchSize= 100 agent1.sinks.sink1.hdfs.fileType = DataStream agent1.sinks.sink1.hdfs.writeFormat =Text agent1.sinks.sink1.hdfs.rollSize = 102400 agent1.sinks.sink1.hdfs.rollCount = 1000000 agent1.sinks.sink1.hdfs.rollInterval = 60 agent1.sinks.sink1.hdfs.round = true agent1.sinks.sink1.hdfs.roundValue = 10 agent1.sinks.sink1.hdfs.roundUnit = minute agent1.sinks.sink1.hdfs.useLocalTimeStamp = true # Use a channel which buffers events in memory agent1.channels.channel1.type = memory agent1.channels.channel1.keep-alive = 120 agent1.channels.channel1.capacity = 500000 agent1.channels.channel1.transactionCapacity = 600 # Bind the source and sink to the channel agent1.sources.source1.channels = channel1 agent1.sinks.sink1.channel = channel1 |
日志采集框架Flume的更多相关文章
- 日志采集框架 Flume
日志采集框架 Flume 1 概述 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到H ...
- 【Hadoop离线基础总结】日志采集框架Flume
日志采集框架Flume Flume介绍 概述 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统.它可以采集文件,socket数据包.文件.文件夹.kafka等各种形式源数据,又可 ...
- 01_日志采集框架Flume简介及其运行机制
离线辅助系统概览: 1.概述: 在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集.结果数据导出. 任务调度等不可或缺的辅助系统,而这些辅助 ...
- 日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)
Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件 http://flume.apache.org/FlumeUserGuide.html Flum ...
- flume日志采集框架使用
flume日志采集框架使用 本次学习使用的全部过程均不在集群上,均在本机环境,供学习参考 先决条件: flume-ng-1.6.0-cdh5.8.3.tar 去cloudrea下载flume框架,笔 ...
- Flume日志采集框架的使用
文章作者:foochane 原文链接:https://foochane.cn/article/2019062701.html Flume日志采集框架 安装和部署 Flume运行机制 采集静态文件到h ...
- 分布式日志收集框架Flume
分布式日志收集框架Flume 1.业务现状分析 WebServer/ApplicationServer分散在各个机器上 想在大数据平台Hadoop进行统计分析 日志如何收集到Hadoop平台上 解决方 ...
- 日志收集框架flume的安装及简单使用
flume介绍 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS.hbase.h ...
- 学习笔记:分布式日志收集框架Flume
业务现状分析 WebServer/ApplicationServer分散在各个机器上,想在大数据平台hadoop上进行统计分析,就需要先把日志收集到hadoop平台上. 思考:如何解决我们的数据从其他 ...
随机推荐
- C#学习笔记-外观模式
题目:股民买卖股票 实现: static void Main(string[] args) { Stock1 gu1 = new Stock1(); Stock2 gu2 = new Stock2() ...
- ThreeJS geometry的顶点世界坐标
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Java 开源博客 Solo 1.6.0 发布 - 新后台
简介 Solo 是一款一个命令就能搭建好的 Java 开源博客系统,并内置了 15+ 套精心制作的皮肤.除此之外,Solo 还有着非常活跃的社区,文章分享到社区后可以让很多人看到,产生丰富的交流互动. ...
- 【javascript】javasrcipt设计模式之状态模式
使用场景 解决多个[ifelse]嵌套,将其封装成若干个方法 区分事物内部的状态,事物内部的状态的改变往往会带来事物的行为的改变 简单的多个状态直接切换的时候 //两个状态之间的切换,使用if-els ...
- Android Fragment重要函数
Fragment的常用函数: 一.Fragment对象 1.void setArguments(Bundle args); 这个函数为Fragment提供构造参数(也就是数据),参数以Bundle类型 ...
- Android 黑色样式menu
效果图:
- 网页简单布局之结构与表现原则(HTML/CSS)
结构 样式 行为真正的分离 前端初级人员会在页面上单纯的用各个div把相关内容独立开: 前端中级人员明白相关属性的设置会给元素带来什么改变,从而减少div的书写: 前端高级人员会以及其简单的和稳定的方 ...
- 搭建高可用mongodb集群(三)—— 深入副本集内部机制
在上一篇文章<搭建高可用mongodb集群(二)-- 副本集> 介绍了副本集的配置,这篇文章深入研究一下副本集的内部机制.还是带着副本集的问题来看吧! 副本集故障转移,主节点是如何选举的? ...
- 搭建高可用mongodb集群(一)——配置mongodb
在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过 ...
- 用canvas播放scratch文件
原文地址:https://blog.csdn.net/qq_36268036/article/details/84262540 基于Github上的scratch-render实现sb2或者sb3文件 ...