前言

在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便捷的开源框架,如图所示:

1. 日志采集框架Flume

1.1 Flume介绍

1.1.1 概述

u  Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。

u  Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中

u  一般的采集需求,通过对flume的简单配置即可实现

u  Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景

1.1.2 运行机制

1、  Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成

2、  每一个agent相当于一个数据传递员[M1] ,内部有三个组件:

a)       Source:采集源,用于跟数据源对接,以获取数据

b)       Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据

c)        Channel:angent内部的数据传输通道,用于从source将数据传递到sink

 

1.1.4 Flume采集系统结构图

1. 简单结构

单个agent采集数据

2. 复杂结构

多级agent之间串联

1.2 Flume实战案例

1.2.1 Flume的安装部署

1、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境

上传安装包到数据源所在节点上

然后解压  tar -zxvf apache-flume-1.6.0-bin.tar.gz

然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME

2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)

3、指定采集方案配置文件,在相应的节点上启动flume agent

先用一个最简单的例子来测试一下程序环境是否正常

1、先在flume的conf目录下新建一个文件

vi   netcat-logger.conf

# 定义这个agent中各组件的名字

a1.sources = r1

a1.sinks = k1

a1.channels = c1

# 描述和配置source组件:r1

a1.sources.r1.type = netcat

a1.sources.r1.bind = localhost

a1.sources.r1.port = 44444

# 描述和配置sink组件:k1

a1.sinks.k1.type = logger

# 描述和配置channel组件,此处使用是内存缓存的方式

a1.channels.c1.type = memory

a1.channels.c1.capacity = 1000

a1.channels.c1.transactionCapacity = 100

# 描述和配置source  channel   sink之间的连接关系

a1.sources.r1.channels = c1

a1.sinks.k1.channel = c1

2、启动agent去采集数据

bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1  -Dflume.root.logger=INFO,console

-c conf   指定flume自身的配置文件所在目录

-f conf/netcat-logger.con  指定我们所描述的采集方案

-n a1  指定我们这个agent的名字

3、测试

先要往agent采集监听的端口上发送数据,让agent有数据可采

随便在一个能跟agent节点联网的机器上

telnet anget-hostname  port   (telnet localhost 44444)

1.2.2 采集案例

1、采集目录到HDFS

采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去

根据需求,首先定义以下3大要素

l  采集源,即source——监控文件目录 :  spooldir

l  下沉目标,即sink——HDFS文件系统  :  hdfs sink

l  source和sink之间的传递通道——channel,可用file channel 也可以用内存channel

配置文件编写:

#定义三大组件的名称

agent1.sources = source1

agent1.sinks = sink1

agent1.channels = channel1

# 配置source组件

agent1.sources.source1.type = spooldir

agent1.sources.source1.spoolDir = /home/hadoop/logs/

agent1.sources.source1.fileHeader = false

#配置拦截器

agent1.sources.source1.interceptors = i1

agent1.sources.source1.interceptors.i1.type = host

agent1.sources.source1.interceptors.i1.hostHeader = hostname

# 配置sink组件

agent1.sinks.sink1.type = hdfs

agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M

agent1.sinks.sink1.hdfs.filePrefix = access_log

agent1.sinks.sink1.hdfs.maxOpenFiles = 5000

agent1.sinks.sink1.hdfs.batchSize= 100

agent1.sinks.sink1.hdfs.fileType = DataStream

agent1.sinks.sink1.hdfs.writeFormat =Text

agent1.sinks.sink1.hdfs.rollSize = 102400

agent1.sinks.sink1.hdfs.rollCount = 1000000

agent1.sinks.sink1.hdfs.rollInterval = 60

#agent1.sinks.sink1.hdfs.round = true

#agent1.sinks.sink1.hdfs.roundValue = 10

#agent1.sinks.sink1.hdfs.roundUnit = minute

agent1.sinks.sink1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in memory

agent1.channels.channel1.type = memory

agent1.channels.channel1.keep-alive = 120

agent1.channels.channel1.capacity = 500000

agent1.channels.channel1.transactionCapacity = 600

# Bind the source and sink to the channel

agent1.sources.source1.channels = channel1

agent1.sinks.sink1.channel = channel1

Channel参数解释:

capacity:默认该通道中最大的可以存储的event数量

trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量

keep-alive:event添加到通道中或者移出的允许时间

2、采集文件到HDFS

采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs

根据需求,首先定义以下3大要素

l  采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’

l  下沉目标,即sink——HDFS文件系统  :  hdfs sink

l  Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel

配置文件编写:

agent1.sources = source1

agent1.sinks = sink1

agent1.channels = channel1

# Describe/configure tail -F source1

agent1.sources.source1.type = exec

agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log

agent1.sources.source1.channels = channel1

#configure host for source

agent1.sources.source1.interceptors = i1

agent1.sources.source1.interceptors.i1.type = host

agent1.sources.source1.interceptors.i1.hostHeader = hostname

# Describe sink1

agent1.sinks.sink1.type = hdfs

#a1.sinks.k1.channel = c1

agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M

agent1.sinks.sink1.hdfs.filePrefix = access_log

agent1.sinks.sink1.hdfs.maxOpenFiles = 5000

agent1.sinks.sink1.hdfs.batchSize= 100

agent1.sinks.sink1.hdfs.fileType = DataStream

agent1.sinks.sink1.hdfs.writeFormat =Text

agent1.sinks.sink1.hdfs.rollSize = 102400

agent1.sinks.sink1.hdfs.rollCount = 1000000

agent1.sinks.sink1.hdfs.rollInterval = 60

agent1.sinks.sink1.hdfs.round = true

agent1.sinks.sink1.hdfs.roundValue = 10

agent1.sinks.sink1.hdfs.roundUnit = minute

agent1.sinks.sink1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in memory

agent1.channels.channel1.type = memory

agent1.channels.channel1.keep-alive = 120

agent1.channels.channel1.capacity = 500000

agent1.channels.channel1.transactionCapacity = 600

# Bind the source and sink to the channel

agent1.sources.source1.channels = channel1

agent1.sinks.sink1.channel = channel1

日志采集框架Flume的更多相关文章

  1. 日志采集框架 Flume

    日志采集框架 Flume 1 概述  Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到H ...

  2. 【Hadoop离线基础总结】日志采集框架Flume

    日志采集框架Flume Flume介绍 概述 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统.它可以采集文件,socket数据包.文件.文件夹.kafka等各种形式源数据,又可 ...

  3. 01_日志采集框架Flume简介及其运行机制

    离线辅助系统概览: 1.概述: 在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集.结果数据导出. 任务调度等不可或缺的辅助系统,而这些辅助 ...

  4. 日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)

    Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件 http://flume.apache.org/FlumeUserGuide.html Flum ...

  5. flume日志采集框架使用

    flume日志采集框架使用 本次学习使用的全部过程均不在集群上,均在本机环境,供学习参考 先决条件: flume-ng-1.6.0-cdh5.8.3.tar  去cloudrea下载flume框架,笔 ...

  6. Flume日志采集框架的使用

    文章作者:foochane  原文链接:https://foochane.cn/article/2019062701.html Flume日志采集框架 安装和部署 Flume运行机制 采集静态文件到h ...

  7. 分布式日志收集框架Flume

    分布式日志收集框架Flume 1.业务现状分析 WebServer/ApplicationServer分散在各个机器上 想在大数据平台Hadoop进行统计分析 日志如何收集到Hadoop平台上 解决方 ...

  8. 日志收集框架flume的安装及简单使用

    flume介绍 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS.hbase.h ...

  9. 学习笔记:分布式日志收集框架Flume

    业务现状分析 WebServer/ApplicationServer分散在各个机器上,想在大数据平台hadoop上进行统计分析,就需要先把日志收集到hadoop平台上. 思考:如何解决我们的数据从其他 ...

随机推荐

  1. slice()方法 和splice 方法的区别

    定义 splice() 方法 用于插入.删除或替换数组的元素. slice() 方法 可提取字符串的某个部分,并以新的字符串返回被提取的部分. 更多的可查看: http://www.cnblogs.c ...

  2. 【tips】编译epic异常解决

    目标:编译 epic 异常信息一: No CMAKE_C_COMPILER could be found.  No CMAKE_CXX_COMPILER could be found.   解决方法: ...

  3. OmniGraffle教程(二)

    原文链接:简书网 创建一个树形结构图是任何一个作图软件最常用的功能之一了,而OmniGraffle画树形图的快速方便是其他软件无法比拟的,花1分钟即可学会,受益无穷. 方法一:用Diagram工具快速 ...

  4. prince2的市场使用规模有多大?

    PRINCE2的使用和应用非常广泛.在过去的12个月里,超过60,000人参加了PRINCE2基础资格(Foundation)或从业资格(Practitioner)考试.现在每周参加考试的人数超过了2 ...

  5. vuex(数据商店实现思想)day06

    安装创建Vue项目

  6. 在 O(1) 时间删除链表结点(C 和 Python 实现)

    (说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 给定单向链表的头指针和一个结点指针,定义一个函数在 O(1) ...

  7. 从golang-gin-realworld-example-app项目学写httpapi (二)

    https://github.com/gothinkster/golang-gin-realworld-example-app/blob/master/users/models.go 模型定义 use ...

  8. java笔记-修改javadoc为中文API信息

    Eclipse 默认的Javadoc API是英文版的,修改成中文版本的API步骤为: --如果朋友您想转载本文章请注明转载地址"http://www.cnblogs.com/XHJT/p/ ...

  9. JFinal启动报错:Exception in thread "main" java.lang.NoClassDefFoundError: org/eclipse/jetty/server/Connector

    - 错误: Exception in thread "main" java.lang.NoClassDefFoundError: org/eclipse/jetty/server/ ...

  10. Exchange2016 & Skype for business 集成之三统一联系人存储

    Exchange2016&Skype for business集成之二统一联系人存储 利用统一的联系人存储库,用户可以维护单个联系人列表,然后使这些联系人适用于多个应用程序,包括 Skype ...