CodeForces - 1025B Weakened Common Divisor
http://codeforces.com/problemset/problem/1025/B
大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1)
分析:
- 首先求所有数对的lcm,把所有数对的两个数的素因子并集求出来
- 求所有lcm的gcd,这样做求出数对之间的公共素因子
- 注意,公共素因子可能在某一组数对中状态为某一部分是ai的素因子而剩下的一部分是bi的素因子,因此可能会导致最后答案既不是ai的因子又不是bi的因子,因此求出来的最后答案得再和每个数对中的a或b求一下最大公约数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=+;
ll a[MAXN],b[MAXN]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld %lld",&a[i],&b[i]);
ll gcd=a[]*b[]/__gcd(a[],b[]);
for(int i=;i<n;i++)
gcd=__gcd(gcd,a[i]*b[i]/__gcd(a[i],b[i]));
if(gcd==)
{
printf("-1\n");
return ;
}
ll temp;
for(int i=;i<n;i++)
{
temp=__gcd(gcd,a[i]);
if(temp>){
gcd=temp;
continue;
}
temp=__gcd(gcd,b[i]);
if(temp>)
gcd=temp;
}
printf("%lld\n",gcd);
return ;
}
CodeForces - 1025B Weakened Common Divisor的更多相关文章
- codeforces 1025B Weakened Common Divisor(质因数分解)
题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- Codeforces #505(div1+div2) B Weakened Common Divisor
题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor
[链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- CF1025B Weakened Common Divisor
思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...
- CF1025B Weakened Common Divisor 题解
Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...
随机推荐
- linux中的 tar命令的 -C 参数,以及其它一些参数
tar命令的-C参数 $ tar -cvf file2.tar /home/usr2/file2 tar: Removing leading '/' from members names hom ...
- 3 Django 简介
MVC 与 MTV 模型 MVC Web 服务器开发领域里著名的 MVC 模式,所谓 MVC 就是把 Web 应用分为模型 (M),控制器(C) 和视图 (V) 三层,他们之间以一种插件式的.松耦合的 ...
- RocketMQ 自定义文件路径
一 .1. 修改store路径2. 修改logs路径3. 修改rmq_bk_gc.log路径4. 修改rmq_srv_gc.log路径二 .1. 获取正确的rocketmq 源码2. 地址:https ...
- Java Annotation Processors
Table Of Contents 1. Introduction 2. When to Use Annotation Processors 3. Annotation Processing Unde ...
- 基于jCOM搭建Java-微软信息桥梁(下)
第一部分析了BEA提供的Java/COM互操作解决方案—jCOM的实现原理:本文是第二部分,比较全面地分析了Weblogic Server的jCOM实现技术之后,通过一个具体实例来说明了jCOM的具体 ...
- underscore概况
看的是1.3.3,这个版本的中文源码解释比较多. 函数的中文注释:http://www.css88.com/doc/underscore1.5.2/#difference 源码的中文注释:http:/ ...
- jsp中路径的写法
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况 代码” ${pageContext.request.context ...
- 使用JDK实现动态代理
- 传智播客.NET视频学习课件
传智播客.NET视频学习课件访问.NET网站了解更多课程详情http://net.itcast.cn(小提示:为什么本书中超链接打不开?)此套课件是伴随 传智播客.net实况教学视频 (小提示:为什么 ...
- linux gitlab-ctl reconfigure报错问题修复 502
Running handlers: There was an error running gitlab-ctl reconfigure: bash[migrate gitlab-rails datab ...