http://codeforces.com/problemset/problem/1025/B

大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1)

分析:

  1. 首先求所有数对的lcm,把所有数对的两个数的素因子并集求出来
  2. 求所有lcm的gcd,这样做求出数对之间的公共素因子
  3. 注意,公共素因子可能在某一组数对中状态为某一部分是ai的素因子而剩下的一部分是bi的素因子,因此可能会导致最后答案既不是ai的因子又不是bi的因子,因此求出来的最后答案得再和每个数对中的a或b求一下最大公约数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=+;
ll a[MAXN],b[MAXN]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld %lld",&a[i],&b[i]);
ll gcd=a[]*b[]/__gcd(a[],b[]);
for(int i=;i<n;i++)
gcd=__gcd(gcd,a[i]*b[i]/__gcd(a[i],b[i]));
if(gcd==)
{
printf("-1\n");
return ;
}
ll temp;
for(int i=;i<n;i++)
{
temp=__gcd(gcd,a[i]);
if(temp>){
gcd=temp;
continue;
}
temp=__gcd(gcd,b[i]);
if(temp>)
gcd=temp;
}
printf("%lld\n",gcd);
return ;
}

CodeForces - 1025B Weakened Common Divisor的更多相关文章

  1. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

  2. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  3. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  4. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  5. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  6. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  7. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  8. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  9. CF1025B Weakened Common Divisor 题解

    Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...

随机推荐

  1. hrabs 首页 新闻,快捷菜单,响应式列表,seliverlight

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="firstPage.aspx ...

  2. RocketMQ:Cannot allocate memory

    使用Storm本地模式消费RocketMQ数据的时候, 消费一点数据之后,就会出现如下错误: Java HotSpot(TM) 64-Bit Server VM warning: INFO: os:: ...

  3. pyspider示例代码二:解析JSON数据

    本系列文章主要记录和讲解pyspider的示例代码,希望能抛砖引玉.pyspider示例代码官方网站是http://demo.pyspider.org/.上面的示例代码太多,无从下手.因此本人找出一下 ...

  4. Android targetSdkVersion 原理

    前几天 Google 官方发布文章解析 compileSdkVersion.minSdkVersion 以及 targetSdkVersion 的含义,以及合理设置各个值的意义,原文 Picking ...

  5. js 中的 2 与 "2"

    case1: "15" * 2 结果:30 case2: 2 * "15" 结果:30 case3: "2" * "15" ...

  6. Restful风格wcf调用2——增删改查

    写在前面 上篇文章介绍如何将wcf项目,修改成restful风格的接口,并在上面提供了查询的功能,上篇文章中也感谢园友在评论中的提的建议,自己也思考了下,确实是那个道理.在urltemplate中,定 ...

  7. [转]How to Clean the Global Assembly Cache

    本文转自:https://www.techwalla.com/articles/how-to-clean-the-global-assembly-cache The Global Assembly C ...

  8. Oracle EBS Request Status: Pending

    如果提交请求以后,状态一直是pending状态,可以在"工具"打开"Manager",查看一下Maximum是否有设置错,另外pending的数量当前是多少. ...

  9. Linux Guard Service - 杀死守护进程

    杀死某个子进程 杀死守护进程的子进程后,改进程会变为僵尸进程 14087 ? Ss 0:00 ./test4-1 14088 ? S 0:00 \_ ./test4-1 14089 ? S 0:00 ...

  10. jmeter测试mysql数据库之JDBC请求

    所有jmeter基本组件功能本文不做介绍.jmeter要链接mysql数据库,首先得下载mysql jdbc驱动包(注:驱动包的版本一定要与你数据库的版本匹配,驱动版本低于mysql版本有可能会导致连 ...