@[最小生成樹, 排列組合]

Discription

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的

最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生

成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整

数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0

00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

Solution

具體做法:

  1. 跑一遍最小生成樹, 統計最小生成樹中每一種權值的邊的出現次數\(sum\), 順便將圖中 所有 邊進行離散化;
  2. 查找在每一種權值的邊中選出\(sum\)條邊, 使得選出的邊滿足每一條邊所連接的都是兩個不同的并查集的組合數量;
  3. 在上一步的答案乘上這個數量(乘法原理), 並且將這種權值的所有邊所連接的并查集都連接起來;

嗯, 結束.

具體爲什麽這種做法能成立, 我也不知道QAQ

代碼比較傻, 隨便找了一個貼上

#include <bits/stdc++.h>
using namespace std;
struct edge
{
int u, v, w, x;
inline bool operator< (const edge &rhs) const
{
return x < rhs.x;
}
}e[1005];
struct count
{
int l, r, use;
}g[1005];
int n, m, fa[105], siz[105]; int getfa(int x)
{
return fa[x] == x ? x : getfa(fa[x]);
} void link(int u, int v)
{
if(siz[u] > siz[v]) fa[v] = u, siz[u] += siz[v];
else fa[u] = v, siz[v] += siz[u];
} bool Kruskal()
{
int cnt = 0, u, v;
for(int i = 1; i <= m; ++i)
{
u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
++g[e[i].w].use;
if(++cnt == n - 1) return true;
}
}
return false;
} int DFS(int w, int i, int k)
{
if(k == g[w].use) return 1;
if(i > g[w].r) return 0;
int ans = 0, u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
ans = DFS(w, i + 1, k + 1);
fa[u] = u, fa[v] = v;
}
return ans + DFS(w, i + 1, k);
} int main()
{
int u, v, w, ans;
cin >> n >> m;
for(int i = 1; i <= n; ++i)
fa[i] = i, siz[i] = 1;
for(int i = 1; i <= m; ++i)
{
cin >> u >> v >> w;
e[i] = (edge){u, v, 0, w};
}
sort(e + 1, e + m + 1);
w = 0;
for(int i = 1; i <= m; ++i)
if(e[i].x == e[i - 1].x) e[i].w = w;
else
{
g[w].r = i - 1;
e[i].w = ++w;
g[w].l = i;
}
g[w].r = m;
ans = Kruskal();
for(int i = 1; i <= n; ++i)
fa[i] = i, siz[i] = 1;
for(int i = 1; i <= w; ++i)
{
ans = ans * DFS(i, g[i].l, 0) % 31011;
for(int j = g[i].l; j <= g[i].r; ++j)
{
u = getfa(e[j].u), v = getfa(e[j].v);
if(u != v) link(u, v);
}
}
cout << ans << endl;
return 0;
}

BZOJ1016最小生成树计数 最小生成树 + 排列组合的更多相关文章

  1. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  2. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  3. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...

  5. 【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理

    蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过. 最小生成树的两个性质: 不同的最小生成树,相同权值使用的边数一定相同. 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致. 这样我 ...

  6. $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理

    题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...

  7. 【BZOJ4517】排列计数(排列组合)

    题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...

  8. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  9. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

随机推荐

  1. shell脚本调试打印日志问题

    shell脚本调试打印日志问题 1. 需求 我们在编写脚本的时候,有时候需要做调试,便于我们定位问题,有时候等脚本上线之后,我们需要保留脚本执行过程中的记录.便于我们在出问题的时候,定位问题. 2. ...

  2. 更新portage之后 安装 certbot

    运行的时候一直报如下的错误: sudo certbot 错误结果: Traceback (most recent call last): File "/usr/lib/python-exec ...

  3. 【实用工具】Teleport Pro爬取整个网站镜像到本地

    1. 使用Teleport Pro可以完全或部分下载一个网站上的内容,在硬盘上创建一个与原网站完全相同的镜象,使用户能够离线浏览 Teleport Pro的安装以及基本使用 在菜单栏Project下得 ...

  4. PHP方法之 mb_substr

    主要功能:中文字符串截取,解决substr中文截取问题,用法基本和substr相同,他可以指定编码. 函数原型:string mb_substr ( string $str , int $start  ...

  5. Python9-装饰器进阶-day12

    wapers方法 def wahaha(): ''' sljfldsjflds :return: ''' print('娃哈哈') print(wahaha.__name__) #查看字符串格式的函数 ...

  6. java 简单秒杀

    以下代码 不考虑多服务器 限制线程池的大小 和队列的限制来实现 package org.zhang; import java.util.concurrent.BlockingQueue; import ...

  7. Java-将字符串转为数字

    package com.tj; public class MyClass implements Cloneable { public static void main(String[] args) { ...

  8. 安卓Toast实现

    代码改变世界 Toast实现显示 // 第一个参数:当前的上下文环境.可用getApplicationContext()或this // 第二个参数:要显示的字符串.也可是R.string中字符串ID ...

  9. python ConfigParser 学习

    [安装] ConfigParser 是解析配置文件的第三方库,需要安装 pip install ConfigParser   [介绍] ConfigParser 是用来读取配置文件(可以是.conf, ...

  10. LightOJ——1066Gathering Food(BFS)

    1066 - Gathering Food   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB W ...