BZOJ1016最小生成树计数 最小生成树 + 排列组合
@[最小生成樹, 排列組合]
Discription
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
8
Solution
具體做法:
- 跑一遍最小生成樹, 統計最小生成樹中每一種權值的邊的出現次數\(sum\), 順便將圖中 所有 邊進行離散化;
- 查找在每一種權值的邊中選出\(sum\)條邊, 使得選出的邊滿足每一條邊所連接的都是兩個不同的并查集的組合數量;
- 在上一步的答案乘上這個數量(乘法原理), 並且將這種權值的所有邊所連接的并查集都連接起來;
嗯, 結束.
具體爲什麽這種做法能成立, 我也不知道QAQ
代碼比較傻, 隨便找了一個貼上
#include <bits/stdc++.h>
using namespace std;
struct edge
{
int u, v, w, x;
inline bool operator< (const edge &rhs) const
{
return x < rhs.x;
}
}e[1005];
struct count
{
int l, r, use;
}g[1005];
int n, m, fa[105], siz[105];
int getfa(int x)
{
return fa[x] == x ? x : getfa(fa[x]);
}
void link(int u, int v)
{
if(siz[u] > siz[v]) fa[v] = u, siz[u] += siz[v];
else fa[u] = v, siz[v] += siz[u];
}
bool Kruskal()
{
int cnt = 0, u, v;
for(int i = 1; i <= m; ++i)
{
u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
++g[e[i].w].use;
if(++cnt == n - 1) return true;
}
}
return false;
}
int DFS(int w, int i, int k)
{
if(k == g[w].use) return 1;
if(i > g[w].r) return 0;
int ans = 0, u = getfa(e[i].u), v = getfa(e[i].v);
if(u != v)
{
link(u, v);
ans = DFS(w, i + 1, k + 1);
fa[u] = u, fa[v] = v;
}
return ans + DFS(w, i + 1, k);
}
int main()
{
int u, v, w, ans;
cin >> n >> m;
for(int i = 1; i <= n; ++i)
fa[i] = i, siz[i] = 1;
for(int i = 1; i <= m; ++i)
{
cin >> u >> v >> w;
e[i] = (edge){u, v, 0, w};
}
sort(e + 1, e + m + 1);
w = 0;
for(int i = 1; i <= m; ++i)
if(e[i].x == e[i - 1].x) e[i].w = w;
else
{
g[w].r = i - 1;
e[i].w = ++w;
g[w].l = i;
}
g[w].r = m;
ans = Kruskal();
for(int i = 1; i <= n; ++i)
fa[i] = i, siz[i] = 1;
for(int i = 1; i <= w; ++i)
{
ans = ans * DFS(i, g[i].l, 0) % 31011;
for(int j = g[i].l; j <= g[i].r; ++j)
{
u = getfa(e[j].u), v = getfa(e[j].v);
if(u != v) link(u, v);
}
}
cout << ans << endl;
return 0;
}
BZOJ1016最小生成树计数 最小生成树 + 排列组合的更多相关文章
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...
- 【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理
蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过. 最小生成树的两个性质: 不同的最小生成树,相同权值使用的边数一定相同. 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致. 这样我 ...
- $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理
题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...
- 【BZOJ4517】排列计数(排列组合)
题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...
- 【bzoj1016】 JSOI2008—最小生成树计数
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
随机推荐
- iOS利用UIDocumentInteractionController和Quick Look打开或预览文档
在App的开发过程中,我们避免不了要打开软件中的文件,例如:Excel文件,Word文件,图片文件等不同格式的文件或者想要通过第三方的App来打开这些文件,那么我们就要用到UIDocumentInte ...
- HTML5 FormData 模拟表单控件 支持异步上传二进制文件 移动端
FormData是XMLHttpRequest Level 2添加的一个新的接口,利用FormData对象,我们可以通过JavaScript用一些键值对来模拟一系列表单控件,还可以使用XMLHttpR ...
- VUE +element el-table运用sortable 拖拽table排序,实现行排序,列排序
Sortable.js是一款轻量级的拖放排序列表的js插件(虽然体积小,但是功能很强大) 项目需求是要求能对element中 的table进行拖拽行排序 这里用到了sorttable Sortable ...
- perl学习之:字符串函数
一.打开.关闭文件 open的返回值用来确定打开文件的操作是否成功,当其成功时返回非零值,失败时返回零,因此可以如下判断: if (open(MYFILE, "myfile" ...
- PHP 微信分享(及二次分享)
js部分: <script src="http://res.wx.qq.com/open/js/jweixin-1.2.0.js"></script> &l ...
- ctci(1)
// // main.cpp // proj1 // // Created by Yuxin Kang on 8/24/14. // Copyright (c) 2014 Yuxin Kang. Al ...
- C语言内存函数
http://see.xidian.edu.cn/cpp/u/hs3/ 函数 说明 calloc() 分配内存空间 free() 释放内存空间 getpagesize() 取得内存分页大小 mallo ...
- redis安装与安全设置
redis Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件 yum安装redis 1.yum安装 #前提得配置好阿里云yum源,epel源 # ...
- B树总结
B树是一种平衡的多路查找树,一棵m阶B树或为空树,或满足下列特性: 1. 每个节点之多有m棵子树 2. 若根节点不是叶子节点,则至少有两颗子树 3. 除根之外所有非终端节点至少有[m/2]可子树 ...
- Visual studio 新建网站出现序号(x)
参考链接: http://www.zhongdaiqi.com/vs2012-new-website-name-bug/ 现象: 分析: VS新建网站出现(1) 这个问题很神秘,把网站删除掉,再创建, ...