14.multi_match+most-fields策略
主要知识点
- most-fields策略的用法
- most-fields策略和best-fields的比较
best-fields策略:将某一个field匹配尽可能多的关键词的doc优先返回回来,也就是说如果这个filed匹配了更多的关键词,那么这个doc的分数就会更高。
most-fields策略:尽可能返回更多field匹配到某个关键词的doc,优先返回回来。也就是说,如果一个doc中有更多的field匹配到了关键词,那么这个doc的得分会更高。
一、准备数据
1、建立一个自定义mapping的index
POST /forum/_mapping/article
{
"properties": {
"sub_title": {
"type": "string",
"analyzer": "english",
"fields": {
"std": {
"type": "string",
"analyzer": "standard"
}
}
}
}
}
2、插入数据
POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"sub_title" : "learning more courses"} }
{ "update": { "_id": "2"} }
{ "doc" : {"sub_title" : "learned a lot of course"} }
{ "update": { "_id": "3"} }
{ "doc" : {"sub_title" : "we have a lot of fun"} }
{ "update": { "_id": "4"} }
{ "doc" : {"sub_title" : "both of them are good"} }
{ "update": { "_id": "5"} }
{ "doc" : {"sub_title" : "haha, hello world"} }
3、进行match搜索
GET /forum/article/_search
{
"query": {
"match": {
"sub_title": "learning courses"
}
}
}
执行结果是:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.219939,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "2",
"_score": 1.219939,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02",
"tag": [
"java"
],
"tag_cnt": 1,
"view_cnt": 50,
"title": "this is java blog",
"content": "i think java is the best programming language",
"sub_title": "learned a lot of course"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 0.5063205,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01",
"tag": [
"java",
"hadoop"
],
"tag_cnt": 2,
"view_cnt": 30,
"title": "this is java and elasticsearch blog",
"content": "i like to write best elasticsearch article",
"sub_title": "learning more courses"
}
}
]
}
}
如果我们用的是类似于english analyzer这种分词器的话,就会将单词还原为其最基本的形态,这个还原单词的过程叫做stemmer。这样可能{ "doc" : {"sub_title" : "learned a lot of course"} },就排在了{ "doc" : {"sub_title" : "learning more courses"} }的前面
learning --> learn
learned --> learn
courses --> course
sub_titile: learning coureses --> learn course
4、加上standerd分词器,
standerd不会去还原单词的基本形态,会保留单词的原样。
POST /forum/_mapping/article
{
"properties": {
"sub_title": {
"type": "string",
"analyzer": "english",
"fields": {
"std": {
"type": "string",
"analyzer": "standard"
}
}
}
}
}
、进行multi_match进行搜索。
GET /forum/article/_search
{
"query": {
"multi_match": {
"query": "learning courses",
"type": "most_fields",
"fields": [ "sub_title", "sub_title.std" ]
}
}
}
执行结果是:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.219939,
"hits": [
{
"_index": "forum",
"_type": "article",
"_id": "2",
"_score": 1.219939,
"_source": {
"articleID": "KDKE-B-9947-#kL5",
"userID": 1,
"hidden": false,
"postDate": "2017-01-02",
"tag": [
"java"
],
"tag_cnt": 1,
"view_cnt": 50,
"title": "this is java blog",
"content": "i think java is the best programming language",
"sub_title": "learned a lot of course"
}
},
{
"_index": "forum",
"_type": "article",
"_id": "1",
"_score": 1.012641,
"_source": {
"articleID": "XHDK-A-1293-#fJ3",
"userID": 1,
"hidden": false,
"postDate": "2017-01-01",
"tag": [
"java",
"hadoop"
],
"tag_cnt": 2,
"view_cnt": 30,
"title": "this is java and elasticsearch blog",
"content": "i like to write best elasticsearch article",
"sub_title": "learning more courses"
}
}
]
}
}
你问我,具体的分数怎么算出来的,很难说,因为这个东西很复杂,
还不只是TF/IDF算法。因为不同的query,不同的语法,都有不同的计算score的细节。
与best_fields的区别
(1)best_fields,是对多个field进行搜索,挑选某个field匹配度最高的那个分数,同时在多个query最高分相同的情况下,在一定程度上考虑其他query的分数。简单来说,你对多个field进行搜索,就想搜索到某一个field尽可能包含更多关键字的数据
优点:通过best_fields策略,以及综合考虑其他field,还有minimum_should_match支持,可以尽可能精准地将匹配的结果推送到最前面
缺点:除了那些精准匹配的结果,其他差不多大的结果,排序结果不是太均匀,没有什么区分度了
实际的例子:百度之类的搜索引擎,最匹配的到最前面,但是其他的就没什么区分度了
(2)most_fields,综合多个field一起进行搜索,尽可能多地让所有field的query参与到总分数的计算中来,此时就会是个大杂烩,出现类似best_fields案例最开始的那个结果,结果不一定精准,某一个document的一个field包含更多的关键字,但是因为其他document有更多field匹配到了,所以排在了前面;所以需要建立类似sub_title.std这样的field,尽可能让某一个field精准匹配query string,贡献更高的分数,将更精准匹配的数据排到前面
优点:将尽可能匹配更多field的结果推送到最前面,整个排序结果是比较均匀的
缺点:可能那些精准匹配的结果,无法推送到最前面
实际的例子:wiki,明显的most_fields策略,搜索结果比较均匀,但是的确要翻好几页才能找到最匹配的结果
14.multi_match+most-fields策略的更多相关文章
- Elasticsearch学习之深入搜索三 --- best fields策略
1. 为帖子数据增加content字段 POST /forum/article/_bulk { "} } { "doc" : {"content" : ...
- 11.best fields策略(dis_max参数设置)
主要知识点 常规multi-field搜索结果分析 dis_max参数设置 一.为帖子数据增加content字段 POST /forum/article/_bulk { "u ...
- 面试系列14 redis的过期策略都有哪些
(1)设置过期时间 我们set key的时候,都可以给一个expire time,就是过期时间,指定这个key比如说只能存活1个小时?10分钟?这个很有用,我们自己可以指定缓存到期就失效. 如果假设你 ...
- 阿里云API网关(14)流控策略
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- ElasticSearch query_string vs multi_match cross_fields query
ElasticSearch query_string vs multi_match cross_fields query 本文记录以字段为中心的查询和以词为中心的查询这两种查询方式的区别以及在Elas ...
- Elasticsearch.Net 异常:[match] query doesn't support multiple fields, found [field] and [query]
用Elasticsearch.Net检索数据,报异常: )); ElasticLowLevelClient client = new ElasticLowLevelClient(settings); ...
- WeQuant交易策略—EMV
EMV指标策略 简介 EMV(Ease of Movement Value, 简易波动指标),它是由RichardW.ArmJr.根据等量图和压缩图的原理设计而成, 目的是将价格与成交量的变化结合成一 ...
- ES进阶--02
第11节深度探秘搜索技术_案例实战基于dis_max实现best fields策略进行多字段搜索 课程大纲 1.为帖子数据增加content字段 POST /forum/article/_bulk{ ...
随机推荐
- html 转word
今日头条发表文章 python-docx — python-docx 0.8.6 documentation http://python-docx.readthedocs.io/en/latest/
- 简析LCD1602液晶驱动及在Arduino上的实例实现
这几日在倒腾新到的Arduino,比起普通单片机来,感觉写程序太简单了.不过和外设打交道还是没那么容易,比如今天要说的看似简单的LCD1602液晶,却费了我一整天才基本搞懂,不过还是有一个小问题没有实 ...
- oc83--自定义类实现copy方法
// // main.m // 自定义类实现copy #import <Foundation/Foundation.h> #import "Person.h" #imp ...
- css list menu
选择让page和folder都显示出来
- 如何的退出无响应的 SSH 连接
~. 具体操作是Shift+-,然后松开按.. tips如果无效,可以先按下Enter,然后进行上面的操作.
- Android连接热点的Socket文件传输
最近把测试丢过来的种种BUG解决后,终于有时间去研究研究Socket通信,再加上以前做的WiFi连接和热点开启,于是有了现在的这篇博文:创建热点发送文件,让另一台手机连接热点接收文件. 效果图: 两台 ...
- 深度学习的seq2seq模型——本质是LSTM,训练过程是使得所有样本的p(y1,...,yT‘|x1,...,xT)概率之和最大
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(En ...
- 作业训练------通过读取c.txt文件中的内容等号右值,并将右值的最大值、最小值、平均值打印到屏幕上。
这篇博客是学习传智播客c++教程的作业,通过在网上进行搜集来完成,但是网上有相似的代码,但是结果总是有点问题,所以本文写了这篇记录下. #include <stdio.h> #includ ...
- java enum int String 相互转换
1. enum<->int enum -> int: int i = enumType.value.ordinal(); int -> enum: enumType b= e ...
- PCB genesis Slot槽转钻孔(不用G85命令)实现方法
PCB钻Slot槽一般都采用G85命令钻槽孔,而采用G85命令工程CAM无法准确的知道Slot槽钻多少个孔,并不能决定钻槽孔的顺序,因为采用G85命令钻孔密度与钻槽顺序由钻机本身决定的.在这里介绍一种 ...