NYOJ760-See LCS again,有技巧的暴力!
See LCS again
- 描述
-
There are A, B two sequences, the number of elements in the sequence is n、m;
Each element in the sequence are different and less than 100000.
Calculate the length of the longest common subsequence of A and B.
- 输入
- The input has multicases.Each test case consists of three lines;
The first line consist two integers n, m (1 < = n, m < = 100000);
The second line with n integers, expressed sequence A;
The third line with m integers, expressed sequence B; - 输出
- For each set of test cases, output the length of the longest common subsequence of A and B, in a single line.
- 样例输入
-
5 4
1 2 6 5 4
1 3 5 4 - 样例输出
-
3
- 上传者
- TC_胡仁东
东哥的题,,TC元老级人物,请收下15级菜鸡的膝盖。
很裸的求LCS。但基于数据大,所以超时的做法不用考虑了。看提交纪律很多MLE的,于是用滚动数组。。WA了。于是在网上找了一种很暴力钻数据空子的做法。详见:http://karsbin.blog.51cto.com/1156716/966387
其实这种做法以前寒假学LCS的时候在网上看到过,当时和小田说了一下,我们都很震惊。但后来被他所举的例子也就是上面博客中提到的例子退化的LCS所推翻了。基于数据水的前提下是可以试试的。一下摘自上面那位大神的博客:
这里也可将其转化为最长递增子序列问题。
举例说明:
A:abdba
B:dbaaba
则1:先顺序扫描A串,取其在B串的所有位置:
2:a(2,3,5) b(1,4) d(0)。
3:用每个字母的反序列替换,则最终的最长严格递增子序列的长度即为解。
替换结果:532 41 0 41 532
最大长度为3.
简单说明:上面的序列和最长公共子串是等价的。
对于一个满足最长严格递增子序列的序列,该序列必对应一个匹配的子串。
反序是为了在递增子串中,每个字母对应的序列最多只有一个被选出。
反证法可知不存在更大的公共子串,因为如果存在,则求得的最长递增子序列不是最长的,矛盾。
最长递增子序列可在O(NLogN)的时间内算出。
配上代码:
const int N=1e5+7;
int c[N],d[N],a[N],b[N],v[N];
int find(int x,int *a,int len)
{
int l=0,r=len;
while(l<=r)
{
int mid=(l+r)/2;
if(a[mid]==x) return mid;
if(a[mid]<x) l=mid+1;
else r=mid-1;
}
return l;
}
void dp(int *a,int k)
{
int len=0;
int b[N];
b[1]=a[0];
if(k) len=1;
for(int i=1;i<k;i++)
{
if(b[len]<a[i])
b[++len]=a[i];
else
{
int pos=find(a[i],b,len);
b[pos]=a[i];
}
}
printf("%d\n",len);
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(v,0,sizeof(v));
vector<int>q[N];
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
v[a[i]]=1;
}
for(int i=0; i<m; i++)
{
scanf("%d",&b[i]);
if(v[b[i]]) q[b[i]].push_back(i);
}
int k=0;
for(int i=0; i<n; i++)
if(!q[a[i]].empty())//其实这里就钻了空子,如果一万个1和一万个1超时是必然的。
{
for(int j=q[a[i]].size()-1; j>=0; j--)
c[k++]=q[a[i]][j];
}
//for(int i=0;i<k;i++) printf("%d%c",c[i],i==k-1?'\n':' ');
dp(c,k);
}
return 0;
}
以上是本菜鸡的一点想法,严格来说不够严谨,单纯为了提高题量。。这样是很不好的。
如果路过的大牛有更好的思路,欢迎提出。
NYOJ760-See LCS again,有技巧的暴力!的更多相关文章
- HDU 6351 (带技巧的暴力)
题意:给定一个数,和一个最多交换次数k,问在不超过k次操作的情况,问可以得到的最大值和最小值是多少? 个人解题的艰辛路程 , 开始是想到了暴力枚举的可能 , 打出来发现在判断枚举的数组与原来数组交换了 ...
- Divisibility by 25 CodeForces - 988E (技巧的暴力)
You are given an integer nn from 11 to 10181018 without leading zeroes. In one move you can swap any ...
- hdu 1006 Tick and Tick 有技巧的暴力
Tick and Tick Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- Codeforces A. Playlist(暴力剪枝)
题目描述: Playlist time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- TopCoder比赛总结表
TopCoder 250 500 ...
- LeetCode-3LongestSubstringWithoutRepeatingCharacters(C#)
# 题目 3. Longest Substring Without Repeating Characters Given a string, find the length of the longes ...
- 2015弱校联盟(1) - E. Rectangle
E. Rectangle Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld Java class name ...
- HDU 4358 莫队算法+dfs序+离散化
Boring counting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 98304/98304 K (Java/Others)T ...
- Educational Codeforces Round 44 (Rated for Div. 2)
题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...
随机推荐
- jsp问题记录
2014-10-10 20:53:16 Jsp的el表达式:‘${value}’ 用于获取后台传过来的值 而<%=value %>则是获取当前页面java代码的值
- 面试王牌 JAVA并发
Java 并发 JavathreadSocketC#C++ 并发 Table of Contents 1 什么是并发问题. 2多线程死锁问题 2 java中synchronized的用法 3 Java ...
- 【C#】将数据库读出的数据转换为DataTable类型集合
return View(ConverDataReaderToDataTable(reader)); // 静态方法public static DataTable ConverDataReaderToD ...
- 基于socketserver实现的并发(tcp和udp)
threading 线程 基于tcp协议:请求建立连接,然后开启进程 基于udp协议:直接开启新进程 基于tcp协议 import socketserver # 导入socketserver模块 # ...
- js操作css样式、js的兼容问题
一.js操作css样式 div . style . width="200px" 在div标签内我们添加了一个style属性,并设定width值.这种写法会给标签带来大量的style ...
- ceph集群一键部署脚本
分布式存储ceph相信大家比较熟悉了.某项目临时要做一个40个节点的存储集群.所以写了这个脚本. 一键部署脚本如下: git clone https://github.com/luckman666/d ...
- iOS 创建xcode插件
苹果的"一个足以应付所有"策略使得它的产品越来越像一个难以下咽的药丸.尽管苹果已经将一些工作流带给了iOS/OS X的开发者,我们仍然希望通过插件来使得Xcode更加顺手! 虽然苹 ...
- 【数据分析 R语言实战】学习笔记 第六章 参数估计与R实现(下)
6.3两正态总体的区间估计 (1)两个总体的方差已知 在R中编写计算置信区间的函数twosample.ci()如下,输入参数为样本x, y,置信度α和两个样本的标准差. > twosample. ...
- php中include_path配置
在php.ini中可配置include_path来达到在任何文件中都可以直接引入该目录下文件 include_path = ".:/usr/share/php:/var/www/phpxwl ...
- 恩智浦iMX6Q核心板/飞思卡尔Cortex-A9高稳定性低功耗开发板
iMX6Q核心板-商业级 iMX6Q-Plus核心板 iMX6DL核心板-商业级 iMX6Q核心板-工业级 iMX6核心板区别: 名称 主频 内存 存储 SATA接口 运行温度 引角扩展 iMX6Q核 ...