Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 
Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 
The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了
解题思路:题意其实就是在一个凸包外建立一座围墙,要求围墙到凸包(城堡)的最小距离为L,求此围墙的最小总长度。公式:围墙的最小总长度=凸包周长+一个以L为半径的圆周长。证明:假设顺时针给出4个点A、B、C、D(都是凸包的顶点)组成一个凸四边形ABCD。不妨过A点作AE、AF分别垂直于AB、AD,过B点作BG、BH分别垂直于AB、BC......过A点以L为半径作一段弧连到AF,同理使GH成为一段弧。显然EG平行且等于AB......对其他顶点进行同样的操作后,可得出围墙的最小值=四边形的周长+四个顶点对应的弧长(半径都为L)之和。如图所示:
推广到任意凸多边形,每段圆弧都是以凸包上每个对应的顶点为圆心,给定的L为半径,与相邻两条边的切线之间的一段圆弧。每段圆弧的两条半径的夹角与凸包内对应的内角互补。设凸包上有n个顶点,则组成了n个圆周角,总角度数为360°*n=2*180°*n,凸包(凸多边形)的内角和为180°*(n-2),作了2*n条垂线,那么所有垂角之和为2*n*90°=180°*n,因此所有小圆弧对应的圆心角之和为2*180°*n-180°*(n-2)-180°*n=360°(为一个以L为半径的圆)。综上所述,围墙的最小总长度=凸包周长+一个以L为半径的圆周长。
AC代码(63ms):Graham-scan算法:时间复杂度为0(nlogn)。
 #include<iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
struct node{int x,y;};
node vex[maxn];
node stackk[maxn];
bool cmp1(node a,node b){
if(a.y==b.y)return a.x<b.x;
else return a.y<b.y;
}
bool cmp2(node a,node b){
double A=atan2(a.y-stackk[].y,a.x-stackk[].x);
double B=atan2(b.y-stackk[].y,b.x-stackk[].x);
if(A!=B)return A<B;
else return a.x<b.x;
}
int cross(node p0,node p1,node p2){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
int main(){
int n,l;
while(~scanf("%d%d",&n,&l)){
for(int i=;i<n;++i)//输入t个点
scanf("%d%d",&vex[i].x,&vex[i].y);
memset(stackk,,sizeof(stackk));
sort(vex,vex+n,cmp1);
stackk[]=vex[];
sort(vex+,vex+n,cmp2);
stackk[]=vex[];
int top=;
for(int i=;i<n;++i){
while(top>&&cross(stackk[top-],stackk[top],vex[i])<=)top--;
stackk[++top]=vex[i];
}
double s=;
for(int i=;i<=top;++i)
s+=dis(stackk[i-],stackk[i]);
s+=dis(stackk[top],vex[]);
s+=*PI*l;//加上圆的周长
printf("%d\n",(int)(s+0.5));//四舍五入
}
return ;
}

AC代码二(32ms):Andrew算法:时间复杂度为O(nlogn),但比Graham-scan算法还快!

 #include<iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
struct node{int x,y;}vex[maxn],stackk[maxn];
bool cmp(node a,node b){//坐标排序
return ((a.y<b.y)||(a.y==b.y&&a.x<b.x));
}
int cross(node p0,node p1,node p2){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
int main(){
int n,l;
while(~scanf("%d%d",&n,&l)){
for(int i=;i<n;++i)
scanf("%d%d",&vex[i].x,&vex[i].y);
memset(stackk,,sizeof(stackk));
sort(vex,vex+n,cmp);
int top=-;
for(int i=;i<n;++i){//构造凸包下侧
while(top>&&cross(stackk[top-],stackk[top],vex[i])<=)top--;
stackk[++top]=vex[i];
}
for(int i=n-,k=top;i>=;--i){//构造凸包上侧
while(top>k&&cross(stackk[top-],stackk[top],vex[i])<=)top--;
stackk[++top]=vex[i];
}
double s=;
for(int i=;i<=top;++i)//计算凸包周长
s+=dis(stackk[i-],stackk[i]);
s+=*PI*l;
printf("%d\n",(int)(s+0.5));
}
return ;
}

题解报告:poj 1113 Wall(凸包)的更多相关文章

  1. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  2. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  3. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43274   Accepted: 14716 Descriptio ...

  6. POJ 1113 Wall(凸包)

    [题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...

  7. POJ 1113 Wall【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  9. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

随机推荐

  1. 初识Restful(学习笔记)

    什么是Restful? REST -- Resource Representational State Transfer(表现层状态转移) 本质上是一种优雅的URL表达方式,描述资源的状态和状态的转移 ...

  2. maven统一配置

    <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> &l ...

  3. (C)strcpy ,strncpy与strlcpy

    1. 背景 好多人已经知道利用strncpy替代strcpy来防止缓冲区越界. 但是如果还要考虑运行效率的话,也许strlcpy是一个更好的方式. 2. strcpy strcpy 是依据 /0 作为 ...

  4. DedeCMS模板中用彩色tag做彩色关键词

    DedeCMS模板中用彩色tag做彩色关键词,下面分享一下吧!修改方法: 1.在/include/common.func.php 中加入如下函数: function getTagStyle() { $ ...

  5. 以太坊EVM在安全性方面的考虑

    以太坊上用户编写的合约是不可控的,要保证这些合约能够正确执行并且不会影响区块链的稳定,虚拟机需要做安全方面的考虑. 1 在程序执行过程中采取的每个计算步骤都必须提前支付费用, 从而防止DoS攻击.先消 ...

  6. html5--6-7 CSS选择器4

    html5--6-7 CSS选择器4 实例 学习要点 掌握常用的CSS选择器 了解不太常用的CSS选择器 什么是选择器 当我们定义一条样式时候,这条样式会作用于网页当中的某些元素,所谓选择器就是样式作 ...

  7. uoj103 apio2014 Palindromes

    题目链接:http://uoj.ac/problem/103 题解: 首先,我们可以用后缀自动机算出每个字符串的出现次数.然后我们可以用manacher找出所有不同的回文串(o(n)个),统计答案即可 ...

  8. Linux和windows下执行sql脚本文件

    利用 sqlplus 登录数据库之后 键入: @/全路径/文件名      即可执行*.sql 文件            例 假设有一个 test.sql 文件 所在路径是/home/oracle/ ...

  9. java中为什么inputstreamreader和buffered reader要配合着用

    因为InputStreamReader是字节输出(汉字会被分为两个字节),而BufferedReader是它的“包装”(整行读取),效率更高,所以配合使用更好.可以通过BufferedReader 流 ...

  10. 02_通过scrollview实现内容滚动

    在ScrollView里面放一个Button和TextView程序直接就挂了. ScrollView它只限制了有几个孩子,没限制有几个孙子.给Button和TextView套上一个爹LinearLay ...