BZOJ 2460: [BeiJing2011]元素 线性基
2460: [BeiJing2011]元素
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4
。
题解:
贪心,优先选择价值大的,证明木有
维护n个数的线性基更新答案
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 7e5+, M = 1e3+, mod = 1e9+, inf = 2e9; int n;
LL ins[N];
struct ss{
LL id,value;
}a[N];
bool cmp(ss s1,ss s2) {
return s1.value>s2.value;
}
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
scanf("%lld%lld",&a[i].id,&a[i].value);
}
sort(a+,a+n+,cmp);
LL ans = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j >= ; --j) {
if(a[i].id&(1LL<<j)) {
if(!ins[j]) {
ins[j] = a[i].id;
break;
}
a[i].id ^= ins[j];
}
}
if(a[i].id) ans += a[i].value;
}
cout<<ans<<endl;
return ;
}
BZOJ 2460: [BeiJing2011]元素 线性基的更多相关文章
- bzoj 2460 [BeiJing2011]元素 (线性基)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...
- BZOJ.2460.[BeiJing2011]元素(线性基 贪心)
题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...
- BZOJ 2460 [BeiJing2011]元素 ——线性基
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...
- BZOJ 2460 [BeiJing2011]元素(线性基模板题)
Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强 ...
- BZOJ:2460[BeiJing2011]元素 (异或基+贪心)
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2910 Solved: 1535 题目链接:https: ...
- BZOJ 2460: [BeiJing2011]元素
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 878 Solved: 470[Submit][Statu ...
- BZOJ-6-2460: [BeiJing2011]元素-线性基
链接 :https://www.lydsy.com/JudgeOnline/problem.php?id=2460 思路 :线性基不唯一,所以排序 进行贪心选择,价值最大的线性基, #include& ...
- BZOJ 2460: [BeiJing2011]元素 贪心,线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 解法:从大到小排序,依次贪心的添加到当前集合就可以了,需要动态维护线性基.用拟阵证明 ...
- bzoj 2460: [BeiJing2011]元素【线性基+贪心】
先按魔力值从大到小排序,然后从大到小插入线性基中,如果插入成功就加上这个魔力值 因为线性基里是没有异或和为0的集合的,所以正确性显然,然后最优性,考虑放进去一个原来没选的,这样为了可行性就要删掉一个, ...
随机推荐
- 谈一谈flex布局使用中碰到的一些问题
起因 工作以后由于大量使用到了flex布局而碰到了一些尚不清楚的问题,以及一些有意思的特性,在此写篇博客记录一下. flex三个值的含义 众所周知,flex布局所有的属性有两种:一种作用在弹性容器(F ...
- qt 窗体间通信
利用qt的信号和槽,可以完成窗体间的通信,下面列出父子窗口利用信号和槽的相关代码. parent窗口: //parent.h #ifndef PARENT_H #define PARENT_H #in ...
- Python之阻塞IO模型与非阻塞IO模型
Python之阻塞IO模型与非阻塞IO模型 IO模型 1 阻塞IO: 全程阻塞 2 非阻塞IO: 发送多次系统调用: 优点:wait for data时无阻塞 缺点:1 系统调用太多 2 数据不是实时 ...
- 【BZOJ 1084】 [SCOI2005]最大子矩阵(DP)
题链 http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩 ...
- LeetCode 464. Can I Win
In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...
- 2016年工作中遇到的问题41-50:Dubbo注册中心奇葩问题,wifi热点坑了
41.获得JSON中的变量.//显示json串中的某个变量,name是变量名function json(json,name){ var jsonObj = eval(json); return jso ...
- LeetCode刷题笔记-递归-路径总和
题目描述: 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 su ...
- luogu1856 [USACO5.5]矩形周长Picture
看到一坨矩形就要想到扫描线.(poj atantis) 我们把横边竖边分开计算,因为横边竖边其实没有区别,以下论述全为考虑竖边的. 怎样统计一个竖边对答案的贡献呢?答:把这个竖边加入线段树,当前的总覆 ...
- BootStrap学习02栅格系统
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Visual Studio Code Edit
微软的跨平台编辑器~~ 下载地址(官网):https://code.visualstudio.com/ 下载地址(网盘):http://pan.baidu.com/s/1ntLy8Tr 使用技巧: c ...