hdu - 2667 Proving Equivalences(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=2767
求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可.
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue> #define CL(arr, val) memset(arr, val, sizeof(arr)) #define ll long long
#define inf 0x7f7f7f7f
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0) #define L(x) (x) << 1
#define R(x) (x) << 1 | 1
#define MID(l, r) (l + r) >> 1
#define Min(x, y) (x) < (y) ? (x) : (y)
#define Max(x, y) (x) < (y) ? (y) : (x)
#define E(x) (1 << (x))
#define iabs(x) (x) < 0 ? -(x) : (x)
#define OUT(x) printf("%I64d\n", x)
#define lowbit(x) (x)&(-x)
#define Read() freopen("a.txt", "r", stdin)
#define Write() freopen("dout.txt", "w", stdout); using namespace std;
#define N 20100
//N为最大点数
#define M 50100
//M为最大边数
int n, m;//n m 为点数和边数 struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[M<<];
int head[N], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
} int DFN[N], Low[N], Stack[N], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[N];//Belong[i] 表示i点属于的连通分支
bool Instack[N];
vector<int> bcc[N]; //标号从1开始 void tarjan(int u ,int fa){
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = ; for (int i = head[u] ; ~i ; i = edge[i].nex ){
int v = edge[i].to ;
if(DFN[v] == -)
{
tarjan(v , u) ;
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = ;//为割桥
}
}
else if(Instack[v]) Low[u] = min(Low[u] ,DFN[v]) ;
}
if(Low[u] == DFN[u]){
int now;
taj ++ ; bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
} void tarjan_init(int all){
memset(DFN, -, sizeof(DFN));
memset(Instack, , sizeof(Instack));
top = Time = taj = ;
for(int i=;i<=all;i++)if(DFN[i]==- )tarjan(i, i); //注意开始点标!!!
}
vector<int>G[N];
int du[N];
void suodian(){
memset(du, , sizeof(du));
for(int i = ; i <= taj; i++)G[i].clear();
for(int i = ; i < edgenum; i++){
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)
{
G[u].push_back(v), du[v]++;
// printf("%d %d\n",u,v);
}
}
}
void init(){memset(head, -, sizeof(head)); edgenum=;}
int main()
{
//Read();
int t,a,b;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(int i=;i<m;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
tarjan_init(n);
suodian();
int x=,y=;
for(int i=;i<=taj;i++)
{
if(du[i]==) x++; //出度为0点的个数
if(G[i].size()==) y++;
}
//printf("%d\n",j);
if(taj==) printf("0\n");
else
printf("%d\n",max(x,y));
}
return ;
}
hdu - 2667 Proving Equivalences(强连通)的更多相关文章
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- UVALive Proving Equivalences (强连通分量,常规)
题意: 给一个有向图,问添加几条边可以使其强连通. 思路: tarjan算法求强连通分量,然后缩点求各个强连通分量的出入度,答案是max(入度为0的缩点个数,出度为0的缩点个数). #include ...
随机推荐
- Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/dispatcher-servlet.xml]
这是因为我把 [/WEB-INF/dispatcher-servlet.xml]的位置换成了[config/springmvc/dispatcher-servlet.xml] 因此idea在原来的位置 ...
- shell脚本,计算1+3+5....100等于多少?
[root@localhost wyb]# cat unevenjia.sh #!/bin/bash #从1+++...100的结果 i= count=$1 $count` do sum=$(($su ...
- WinForm各种关闭
Appication.Exit(); Environment.Exit(); System.Threading.Thread.CurrentThread.Abort(); Process.GetCur ...
- lucene测试类
package test.lucene; import java.io.BufferedReader;import java.io.File;import java.io.FileInputStrea ...
- js获取主机名实现页面跳转
<script language="javascript" type="text/javascript"> var hostname ...
- cache支持三种pre-fetch方式:normal/pre-fetch1/pre-fetch2-way1/pre-fetch-way2
1.normal fetch ----fetch 1 cache line once 2. pre-fetch mode one ---- fetch 3 cache line once 3.pre ...
- python--动态传参,作用域,函数嵌套
一 . 动态传参(重点) * , ** * 与 ** * 在形参位置. * 表示不定参数, 接收的是位置参数 接收到的位置参数的动态传参: 都是元组 def eat(*food): # 在形参这里 ...
- c++-string-1
解答注意: 我写的时候考虑了: 1) " my"(设置flag,为true时表示上一个是非空格字符) 2) "hello John"(最后不是空格结尾, ...
- unittest跳过测试和预期失败
在运行测试时,有时需要直接跳过某些测试用例,或者当用例符合某个条件时跳过测试,又或者直接将测试用例设置为失败.unittest提供了这些需求的装饰器. unittest.skip(reason) 无条 ...
- OmniGraffler软件和激活码
mac上用户画图的软件:OmniGraffler破解方法 1.激活码 Name: Appked SN: MFWG-GHEB-HYTW-CGHT-CSXU-QCNC-SXU 2.软件连接 链接: htt ...