深入理解dispatch_sync
关于GCD的基础知识,之前写过一篇博客,详见GCD基础知识。虽然之前已经梳理过了,但对很多知识点的理解仍然不够透彻…写这篇博客的原因是在阅读AFNetworking代码时遇到一些奇怪的代码。
如下:
- (NSURLSessionDataTask *)dataTaskWithRequest:(NSURLRequest *)request
completionHandler:(void (^)(NSURLResponse *response,
id responseObject,
NSError *error))completionHandler
{
__block NSURLSessionDataTask *dataTask = nil;
dispatch_sync(url_session_manager_creation_queue(), ^{
dataTask = [self.session dataTaskWithRequest:request];
}); [self addDelegateForDataTask:dataTask completionHandler:completionHandler]; return dataTask;
}
这段代码是在AFURLSessionManager中定义的,用于创建Data Task(NSURLSessionDataTask实例),这段代码令我比较奇怪的地方在于:使用dispatch_sync同步派发的方式提交任务。这短短几行(6~13行)代码的逻辑是:
- 以同步派发的方式提交任务 — 创建一个NSURLSessionDataTask对象;
- 第11行代码会被阻塞,直到NSURLSessionDataTask对象创建成功;
- “创建一个NSURLSessionDataTask对象”这个block执行完成,继续执行11~13行代码;
为什么这么处理呢?为什么以dispatch_sync的方式处理“创建Data Task”呢?基于之前的知识,我的猜测如下:
- 为了效率,“创建Data Task”是一个相对比较耗时间的工作,dataTaskWithRequest:completionHandler:这个方法的上下文可能是main thread,所以不能让“创建Data Task”过长时间阻塞当前线程;
P.S:但根据我的理解,dispatch_sync总会阻塞当前线程,直到所提交的任务执行完成,难道是我哪里理解错了,不禁差生了疑惑“dispatch_sync(…, block)”中的block的执行线程是哪个?是dispatch_sync当前上下文的线程还是另外一个线程?好吧,得趁机把这个问题搞清楚。 - 为了其他目的,我尚且不知道的原因。
无论如何,我得对dispatch_sync有进一步的理解了。
dispatch_sync使用说明
关于dispatch_sync代码的执行逻辑,恐怕很多人都已经知道了。以如下代码为例:
NSLog(@"step1");
dispatch_sync(aDispatchQueue, ^{
NSLog(@"step2");
//block具体代码
});
NSLog(@"step3");
简而言之,dispatch_sync()中的block会被同步派发,其上下文会被阻塞,直到dispatch_block派发的block被执行完成,这段代码的执行结果一定是:
step1
step2
step3
但问题是,dispatch_sync()的block的执行线程和dispatch_sync上下文所对应的线程是一个线程吗?
关于这个问题曾在GCD基础知识中阐述过,也一直以为:
dispatch_sync所派发的block的执行线程和dispatch_sync上下文线程是同一个线程(无论上述代码中的aDispatchQueue是serial dispatch queue还是concurrent dispatch queue)。
但在阅读网络资源的时候发现有这么一种说法:
编译器会根据实际情况优化代码,所以有时候你会发现block其实还在当前线程上执行,并没用产生新线程。
P.S:这个说法来自于iOS多线程的初步研究(八)— dispatch队列。
显然,网友的这个说法的言外之意是“dispatch_sync中的block的执行线程可能就是dispatch_sync上下文所在的线程,也可能不是”。
不禁对自己之前的理解产生了怀疑。孰是孰非?查了很多的资料,但都没能得到一个确切的答案。后来询问了一些不是相对权威的前辈,他们都支持“dispatch_sync所派发的block的执行线程和dispatch_sync上下文线程是同一个线程”这种说法。
我也通过示例代码做了一些验证:
- (void)viewDidLoad {
[super viewDidLoad];
NSLog(@"current thread 1: %@", [NSThread currentThread]);
dispatch_sync(dispatch_queue_create("I.am.a.serial.dispatch.queue", DISPATCH_QUEUE_SERIAL), ^{
NSLog(@"current thread 2: %@", [NSThread currentThread]);
});
dispatch_sync(dispatch_queue_create("I.am.a.concurrent.dispatch.queue", DISPATCH_QUEUE_CONCURRENT), ^{
NSLog(@"current thread 3: %@", [NSThread currentThread]);
});
}
/* 执行结果
current thread 1: <NSThread: 0x7fd96b42ca50>{number = 1, name = main}
current thread 2: <NSThread: 0x7fd96b42ca50>{number = 1, name = main}
current thread 3: <NSThread: 0x7fd96b42ca50>{number = 1, name = main}
*/
示例代码的执行结果显然说明dispatch_sync中的block的执行线程总是和dispatch_sync所在的上下文是同一个线程。但我依然怀疑“是不是dispatch_sync中处理的事情太简单了?弄复杂一点看看”,于是我做了如下修改:
- (void)viewDidLoad {
[super viewDidLoad];
NSLog(@"current thread 1: %@", [NSThread currentThread]);
dispatch_sync(dispatch_queue_create("I.am.a.serial.dispatch.queue", DISPATCH_QUEUE_SERIAL), ^{
dispatch_queue_t aConcurrentDispatchQueue = dispatch_queue_create("he", DISPATCH_QUEUE_CONCURRENT);
__block long sum = ;
for (int i = ; i < ; ++i) {
dispatch_async(aConcurrentDispatchQueue, ^{
sum += i;
});
}
NSLog(@"current thread 2: %@", [NSThread currentThread]);
});
dispatch_sync(dispatch_queue_create("I.am.a.concurrent.dispatch.queue", DISPATCH_QUEUE_CONCURRENT), ^{
dispatch_queue_t aSerialDispatchQueue = dispatch_queue_create("ha", DISPATCH_QUEUE_SERIAL);
__block long sum = ;
for (int i = ; i < ; ++i) {
dispatch_sync(aSerialDispatchQueue, ^{
sum += i;
});
}
NSLog(@"current thread 3: %@", [NSThread currentThread]);
});
}
无论如何增加了dispatch_sync中的block的复杂程度。得到的结果并无区别。
如此这般,我想我可以认定之前的说法:
「dispatch_sync派发的block的执行线程总是和dispatch_sync所在的上下文是同一个线程」。
相信以后能发现更加权威的文档资料来佐证这个观点。
使用串行同步队列保护代码
回到本文开头部分的代码:
__block NSURLSessionDataTask *dataTask = nil;
dispatch_sync(url_session_manager_creation_queue(), ^{
dataTask = [self.session dataTaskWithRequest:request];
}); [self addDelegateForDataTask:dataTask completionHandler:completionHandler]; return dataTask;
上述url_session_manager_creation_queue()函数返回的其实是一个serial dispatch queue,这种组合即所谓的「串行同步队列」。
经过上文的分析,这段代码中使用「串行同步队列」创建NSURLSessionDataTask实例显然不是为了提高效率,那么它的意义是什么呢?
好吧,既然搞不懂,就查资料吧!
翻开《Effective Objective-C 2.0》,看到item41 — 《多用派发队列,少用同步锁》,我想,这段代码中使用「串行同步队列」的唯一解释是:为了保证[self.session dataTaskWithRequest:request]的线程安全。
至于为什么要保证[self.session dataTaskWithRequest:request]这个操作的线程安全,考虑到dataTaskWithRequest:这个方法是在iOS中定义的(只提供了接口,看不到源码),此处就不作详细分析了,我猜测这个方法不是「线程安全」方法吧。
dispatch_sync使用注意事项
学习GCD当然要读Apple的官方文档《Concurrency Programming Guide》,其中包括关于使用dispatch_sync的提示:
Important: You should never call the dispatch_sync or dispatch_sync_f function from a task that is executing in the same queue that you are planning to pass to the function. This is particularly important for serial queues, which are guaranteed to deadlock, but should also be avoided for concurrent queues.
简单来说,在dispatch_sync嵌套使用时要注意:不能在一个嵌套中使用同一个serial dispatch queue,因为会发生死锁;
假设有如下这么一段代码要执行:
- (void)test {
dispatch_queue_t aSerialDispatchQueue =
dispatch_queue_create("I.am.an.iOS.developer", DISPATCH_QUEUE_SERIAL);
dispatch_sync(aSerialDispatchQueue, ^{
// block 1
NSLog(@"Good Night, Benjamin.");
dispatch_sync(aSerialDispatchQueue, ^{
// block 2
NSLog(@"Good Night, Daisy.");
});
});
}
自己试着执行以下就会发现:Good Night, Daisy.这一句永远都无法被打印出来,原因很简单,程序产生了死锁。为什么会产生死锁呢?
可以想象aSerialDispatchQueue在底层实现中有一把“锁”,这把锁确保serial dispatch queue中只有一个block被执行,当执行到block 1代码时,这把锁为block 1所持有,当block 1执行完了,会释放之;然而block 1同步派发了一个任务block 2,同步派发意味着block 1会被阻塞,直到block 2被执行完成;但是这里产生了矛盾,block 2顺利执行的前提是aSerialDispatchQueue的这把“锁”被block 1释放,但是block 1释放这把“锁”的前提是block 1执行完成,而block 1执行完的前提是block 2执行完成;所以造成的局面是“block 2等待block 1执行完成置放‘锁’”,同时“block 1等待block 2执行完成”,这就是典型的deadlock。
这一段代码还好,比较容易避免,但是如果对GCD理解不深,更多的时候容会写出如下代码:
- (void)viewDidLoad {
[super viewDidLoad];
// 巴拉巴拉,做了很多事情
NSLog(@"Good Night, Benjamin.");
dispatch_sync(dispatch_get_main_queue(), ^{
// refresh UI
NSLog(@"Good Night, Daisy.");
});
}
这段代码的问题其实和上一段代码类似,只不过这里的serial dispatch queue恰好是main queue。
上述的deadlock问题主要针对「同步串行队列」,对于「同步并行队列」,根据我的理解应该不存在这个deadlock问题,但是《Concurrency Programming Guide》明确说了:
…This is particularly important for serial queues, which are guaranteed to deadlock, but should also be avoided for concurrent queues.
P.S:目前还不理解《Concurrency Programming Guide》中的这个说辞。
P.S:根据我的理解,「串行队列」在底层实现中应该有一把“锁”用来保证「串行队列」中的block有且仅有一个block被执行;但是「并行队列」的实现机制是啥呢?希望以后能回答这个问题。也许只有回答了这个问题,才能理解“… but should also be avoided for concurrent queues”。
参考资料:
- 《Effective Objective-C 2.0》;
- 博文《iOS多线程的初步研究(八)— dispatch队列》;
- 《Concurrency Programming Guide》;
深入理解dispatch_sync的更多相关文章
- GCD深入理解(1)
写在前面 本文原文为raywenderlich的<grand-central-dispatch-in-depth-part-1>:顺便提及一下,笔者认为,对于iOS初学者而言,raywen ...
- GCD的深入理解
GCD 深入理解(一) 本文由@nixzhu翻译至raywenderlich的<grand-central-dispatch-in-depth-part-1> 虽然 GCD 已经出现过一段 ...
- iOS开发:深入理解GCD 第二篇(dispatch_group、dispatch_barrier、基于线程安全的多读单写)
Dispatch Group在追加到Dispatch Queue中的多个任务处理完毕之后想执行结束处理,这种需求会经常出现.如果只是使用一个Serial Dispatch Queue(串行队列)时,只 ...
- coreData 深入理解4 --总结 (线程安全与同步--iOS5 前后对比)
Core Data是iOS中很重要的一个部分,可以理解为基于SQLite(当然也可以是其他的Storage,如In-memory,只是SQLite比较常见)的一个ORM实现,所以有关系数据库的特性,又 ...
- GCD 深入理解:第一部分
虽然 GCD 已经出现过一段时间了,但不是每个人都明了其主要内容.这是可以理解的:并发一直很棘手,而 GCD 是基于 C 的 API ,它们就像一组尖锐的棱角戳进 Objective-C 的平滑世界. ...
- 深入理解GCD(一)
虽然 GCD 已经出现过一段时间了,但不是每个人都明了其主要内容.这是可以理解的:并发一直很棘手,而 GCD 是基于 C 的 API ,它们就像一组尖锐的棱角戳进 Objective-C 的平滑世界. ...
- GCD 深入理解(一)
http://www.cocoachina.com/industry/20140428/8248.html 本文由@nixzhu翻译至raywenderlich的<grand-central-d ...
- iOS开发中GCD在多线程方面的理解
GCD为Grand Central Dispatch的缩写. Grand Central Dispatch (GCD)是Apple开发的一个多核编程的较新的解决方法.在Mac OS X 10.6雪豹中 ...
- 深入理解 GCD
前言 首先提出一些问题: dispatch_async 函数如何实现,分发到主队列和全局队列有什么区别,一定会新建线程执行任务么? dispatch_sync 函数如何实现,为什么说 GCD 死锁是队 ...
随机推荐
- numpy数组之读写文件
目录 通过 numpy 读写 txt 或 csv 文件 通过 numpy 读写 npy 或 npz 文件 读写 npy 文件 读写 npz 文件 通过 h5py 读写 hdf5 文件 简单读取 通过切 ...
- mysql 5.7版本目录无data文件夹的解决办法
安装mysql 5.7+版本时,若发现因根目录下,缺少data文件夹的情况, ***请不要去拷贝其他版本的data文件夹!*** 因为此操作会出现很多潜在问题:比如我遇到的执行show variabl ...
- setImageEdgeInsets 和 setImage配合使用达到button区域大并可调节其上图片显示区域大小的效果
[self.indicator setImage:[UIImage imageNamed:@"01_login_moreicon@2x.png"] forState:UIContr ...
- 转:VMware中三种网络连接的区别
转自:http://www.cnblogs.com/rainman/archive/2013/05/06/3063925.html VMware中三种网络连接的区别 1.概述 2.bridged( ...
- 转: DNS 原理入门 (from 阮一峰)
转自:http://www.ruanyifeng.com/blog/2016/06/dns.html DNS 原理入门 作者: 阮一峰 日期: 2016年6月16日 DNS 是互联网核心协议之一. ...
- MBProgressHUD 显示方向异常
一直在iphone上使用MBProgressHUD做提示信息视图.一直都没有什么问题,但用在ipad上使用时.却有时会出现显示方向不正常.如ipad屏幕是横的,但当MBProgressHUD出现时却依 ...
- python 学习笔记 13 -- 经常使用的时间模块之time
Python 没有包括相应日期和时间的内置类型.只是提供了3个相应的模块,能够採用多种表示管理日期和时间值: * time 模块由底层C库提供与时间相关的函数.它包括一些函数用于获取时钟时间和处 ...
- 线程特定数据TSD总结
一线程的本质 二线程模型的引入 三线程特定数据 四关键函数说明 五刨根问底啥原理 六私有数据使用演示样例 七參考文档 一.线程的本质 Linux线程又称轻量进程(LWP),也就说线程本质是用进程之间共 ...
- 生成可重集的排序 (白书P184)
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...
- SQL模糊查询碰到空值怎么办?
作者:iamlaosong SQL查询语句用%来做模糊查询.程序中一般要求用户输入部分信息,依据这个信息进行模糊查询. 比如用户输入340104,以下这条语句就是查询昨天客户代码为340104开头的全 ...