引例: Matrix Power Series

题目大意,给定矩阵A,求A^+A^+A^+...A^N。
题解:已知X=a,可以通过以下矩阵求出ans=a^+a^+...a^N ans=矩阵^n后第一行之和-=矩阵^(n+)后右上格的和-。
同理:矩阵也可以,只需要把1改为单位矩阵元即可。

左图a是常数,1就是1; 右图A是矩阵,1是单位元矩阵(主对角线是1)。

          

代码1:矩阵^N,第一行之和-1。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int N,K,Mod;
struct mat
{
int mp[maxn][maxn],len;
mat(int x){ len=x; memset(mp,,sizeof(mp)); }
mat friend operator *(mat a,mat b)
{
mat res(a.len);
for(int k=;k<=res.len;k++)
for(int i=;i<=res.len;i++)
for(int j=;j<=res.len;j++)
res.mp[i][j]=(res.mp[i][j]+a.mp[i][k]*b.mp[k][j])%Mod;
return res;
}
mat friend operator ^(mat a,int x)
{
mat res(a.len);
for(int i=;i<=res.len;i++) res.mp[i][i]=;
while(x){
if(x&)res=res*a; a=a*a; x>>=;
} return res;
}
};
int main()
{
scanf("%d%d%d",&N,&K,&Mod);
mat array(N+N);
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
scanf("%d",&array.mp[i][j]);
}
for(int i=;i<=N;i++) array.mp[i][i+N]=array.mp[i+N][i+N]=;
array=array^(K);
for(int i=;i<=N;i++) array.mp[i][i+N]-=;
for(int i=;i<=N;i++){
for(int j=;j<N;j++)
printf("%d ",(array.mp[i][j]+array.mp[i][j+N]+Mod)%Mod);
printf("%d\n",(array.mp[i][N]+array.mp[i][N+N]+Mod)%Mod);
}
return ;
}

代码2:矩阵^N+1,右上格之和-1。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int N,K,Mod;
struct mat
{
int mp[maxn][maxn],len;
mat(int x){ len=x; memset(mp,,sizeof(mp)); }
mat friend operator *(mat a,mat b)
{
mat res(a.len);
for(int k=;k<=res.len;k++)
for(int i=;i<=res.len;i++)
for(int j=;j<=res.len;j++)
res.mp[i][j]=(res.mp[i][j]+a.mp[i][k]*b.mp[k][j])%Mod;
return res;
}
mat friend operator ^(mat a,int x)
{
mat res(a.len);
for(int i=;i<=res.len;i++) res.mp[i][i]=;
while(x){
if(x&)res=res*a; a=a*a; x>>=;
} return res;
}
};
int main()
{
scanf("%d%d%d",&N,&K,&Mod);
mat array(N+N);
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
scanf("%d",&array.mp[i][j]);
}
for(int i=;i<=N;i++) array.mp[i][i+N]=array.mp[i+N][i+N]=;
array=array^(K+);
for(int i=;i<=N;i++) array.mp[i][i+N]-=;
for(int i=;i<=N;i++){
for(int j=;j<N;j++)
printf("%d ",(array.mp[i][j+N]+Mod)%Mod);
printf("%d\n",(array.mp[i][N+N]+Mod)%Mod);
}
return ;
}

代码3:利用二分。

--------------------分界线---------------------------

例题:HDU2243:考研路茫茫——单词情结

题意:问长度位1到L的所有单词中,有多少个不含给出的几个单词。
思路:利用矩阵得到可以26的1到N次幂。然后利用AC自动机得到基本矩阵X,再利用矩阵得到得到X^+X^+X^...X^N。
比如得到26的0到N次幂和,就有矩阵a[][]=,a[][]=,a[][]=,a[][]=;
矩阵^N后,第一行的和就是答案。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ull unsigned long long
const int maxn=;
int ch[maxn][],cnt;
int q[maxn],head,tail,Next[maxn],tag[maxn];
char s[];
struct mat
{
ull mp[maxn][maxn];
mat(){memset(mp,,sizeof(mp));}
mat init(){ memset(mp,,sizeof(mp));}
mat friend operator *(mat a,mat b)
{
mat res;
for(int k=;k<=max(cnt,);k++)
for(int i=;i<=max(cnt,);i++)
for(int j=;j<=max(cnt,);j++)
res.mp[i][j]+=a.mp[i][k]*b.mp[k][j];
return res;
}
mat friend operator ^(mat a,int x)
{
mat res;
for(int i=;i<=cnt;i++)
res.mp[i][i]=;
while(x){
if(x&) res=res*a;
a=a*a; x>>=;
} return res;
}
}; mat array; struct ACautom
{
void update()
{
cnt=head=tail=;
memset(Next,,sizeof(Next));
memset(tag,,sizeof(tag));
memset(ch,,sizeof(ch));
array.init();
}
void insert()
{
int Now=;
for(int i=;s[i];i++){
int x=s[i]-'a';
if(!ch[Now][x]) ch[Now][x]=++cnt;
Now=ch[Now][x];
} tag[Now]=;
}
void build()
{
for(int i=;i<;i++){
if(ch[][i]) q[++head]=ch[][i];
if(!tag[ch[][i]]) array.mp[][ch[][i]]++;
}
while(tail<head){
int u=q[++tail];
for(int i=;i<;i++){
if(ch[u][i]){
q[++head]=ch[u][i];
Next[ch[u][i]]=ch[Next[u]][i];
if(tag[Next[ch[u][i]]]) tag[ch[u][i]]=;
}
else ch[u][i]=ch[Next[u]][i];
if(!tag[ch[u][i]]) array.mp[u][ch[u][i]]++;
}
}
cnt++;
for(int i=;i<=cnt;i++) array.mp[i][cnt]=;
}
void qpow(int K)
{
ull ans,res=;
mat base;
base.mp[][]=; base.mp[][]=;
base.mp[][]=; base.mp[][]=;
base=base^K;
ans=base.mp[][]+base.mp[][];
array=array^K;
for(int i=;i<=cnt;i++) res=res+array.mp[][i];
cout<<ans-res<<endl;
}
}Trie;
int main()
{
int N,K;
while(~scanf("%d%d",&N,&K)){
Trie.update();
for(int i=;i<=N;i++) {
scanf("%s",s);
Trie.insert();
}
Trie.build();
Trie.qpow(K);
}
return ;
}

【矩阵---求A的1到N次幂之和】的更多相关文章

  1. [zt]矩阵求导公式

    今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --&g ...

  2. Ipad,IPhone(矩阵求递推项+欧拉定理)

    Ipad,IPhone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. AI 矩阵求导

    矩阵求导 参考链接: https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities

  4. CodeForces 702B Powers of Two【二分/lower_bound找多少个数/给出一个数组 求出ai + aj等于2的幂的数对个数】

    B. Powers of Two   You are given n integers a1, a2, ..., an. Find the number of pairs of indexes i,  ...

  5. MATLAB矩阵求值和稀疏矩阵

    方阵的行列式: det(A) 矩阵线性无关的行数或列数,称为矩阵的秩. rank(A) 求3~20阶魔方矩阵的秩 for n=3:20 rank(magic(n)) end 矩阵的迹等于矩阵的对角线元 ...

  6. Tutte矩阵求一般图最大匹配

    [集训队2017论文集] 一张无向图的Tutte矩阵为 其中xi,j为一个random的值. Tutte矩阵的秩(一定为偶数)/2 就是这张图的最大匹配. 原理大概就是: 一个图有完美匹配,则det( ...

  7. 笔试算法题(26):顺时针打印矩阵 & 求数组中数对差的最大值

    出题: 输入一个数字矩阵,要求从外向里顺时针打印每一个数字: 分析: 从外向里打印矩阵有多重方法实现,但最重要的是构建合适的状态机,这样才能控制多重不同的操作: 注意有四种打印模式(左右,上下,右左, ...

  8. POJ 3233 Matrix Power Series(构造矩阵求等比)

    Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...

  9. 行列有序矩阵求第k大元素

    问题来源:http://www.careercup.com/question?id=6335704 问题描述: Given a N*N Matrix. All rows are sorted, and ...

随机推荐

  1. android 禁止ViewPager滑动

    最近项目中,有个需求就是要禁止ViewPager滑动事件,我们看下360手机助手的界面,风格就类似这样的 大家如果使用过360手机助手就会发现中间内容是不可以滑动的,现在写一个demo,讲下怎么禁止V ...

  2. Java 并发编程中的 Executor 框架与线程池

    Java 5 开始引入 Conccurent 软件包,提供完备的并发能力,对线程池有了更好的支持.其中,Executor 框架是最值得称道的. Executor框架是指java 5中引入的一系列并发库 ...

  3. django学习之- simple_tag

    如何将前端的数据直接通过python模块进行渲染,使用django的simple_tag功能,如下 django后端编写: 1:在对应的app目录下创建目录:templatetags 2:在templ ...

  4. nyoj_90_整数划分_201403161553

    整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 其中n1≥n2≥…≥nk≥1,k≥1. 正整数 ...

  5. Hihocoder 1561 观光旅行(启发式合并+贪心)

    题目链接 Hihocoder 1561 首先对原图求$MST$ 我们发现某条边成为某两个点的关键路径的必要条件是这条边是最小生成树的树边. 所以我们求$MST$的同时进行启发式合并. 把$size$小 ...

  6. CentOS yum update 与 yum upgrade 区别

    yum -y update 升级所有包同时也升级软件和系统内核 yum -y upgrade 只升级所有包,不升级软件和系统内核 官方文档:https://access.redhat.com/docu ...

  7. ubuntu下安装jdk、tomcat、mysql

    1.JDK安装 方法1: 将JDK安装包解压缩之后,编辑~/.bashrc文件,在该文件里面加入下面的配置,然后通过source ~/.bashrc.JDK即安装成功. export JAVA_HOM ...

  8. python多线程(三)

    原文:http://www.cnblogs.com/tqsummer/archive/2011/01/25/1944771.html 一.Python中的线程使用: Python中使用线程有两种方式: ...

  9. PHP中文分词扩展 SCWS

    1.scws简单介绍 SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统). 这是一套基于词频词典的机械式中文分词引擎,它能将一整段的中 ...

  10. vue2.0 自定义过滤器(filter)实例

    一.过滤器简介 (1)过滤器创建 过滤器的本质 是一个有参数 有返回值的方法 new Vue({ filters:{ myCurrency:function(myInput){ return 处理后的 ...