分裂游戏 bzoj-1188 HNOI-2007

题目大意题目链接

注释:略。


想法

我们发现如果一个瓶子内的小球个数是奇数才是有效的。

所以我们就可以将问题变成了一个瓶子里最多只有一个球球。

设$sg(x)$表示位置为$x$的小球的$sg$值。

显然通过$n^2$暴力转移即可。

求出了所有点的$sg$值之后,把所有有奇数个小球的位置用$SG$定理异或起来即可啦。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 25
using namespace std;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
int a[26],sg[26];
void pre()
{
bool mark[20001];
sg[1]=0;
for(int i=2;i<=25;i++)
{
memset(mark,0,sizeof(mark));
for(int j=1;j<i;j++)
for(int k=1;k<=j;k++)
mark[sg[j]^sg[k]]=1;
for(int j=0;;j++)
if(!mark[j]){sg[i]=j;break;}
}
// for(int i=0;i<=22;i++) printf("%d ",sg[i]); puts("");
}
int main()
{
int t,n;
pre();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
int ans=0,tot=0;
for(int i=1;i<=n;i++)
if(a[i]&1)ans^=sg[n-i+1];
for(int i=1;i<=n;i++) if(a[i])
for(int j=i+1;j<=n;j++)
for(int k=j;k<=n;k++)
if((ans^sg[n-i+1]^sg[n-j+1]^sg[n-k+1])==0)
{
tot++;
if(tot==1)printf("%d %d %d\n",i-1,j-1,k-1);
}
if(!tot)printf("-1 -1 -1\n");
printf("%d\n",tot);
}
return 0;
}

小结:博弈论真的考验思维。注意$sg$的更新时定义的是位置而不是距离,所以在统计答案的时候需要用$n-i+1$。

[bzoj1188][HNOI2007]分裂游戏_博弈论的更多相关文章

  1. [BZOJ1188][HNOI2007]分裂游戏(博弈论)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...

  2. 【BZOJ1188】分裂游戏(博弈论)

    [BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...

  3. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  4. BZOJ1188:[HNOI2007]分裂游戏(博弈论)

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...

  5. 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏

    因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...

  6. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  7. bzoj1188: [HNOI2007]分裂游戏

    Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...

  8. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  9. luoguP3185 [HNOI2007]分裂游戏 枚举 + 博弈论

    每个位置的瓶子中的每个石子是一个独立的游戏 只要计算出他们的\(sg\)值即可 至于方案数,反正不多\(n^3\)暴力枚举即可 反正怎么暴力都能过啊 复杂度\(O(Tn^3)\) #include & ...

随机推荐

  1. ssm(Spring、Springmvc、Mybatis)实战之淘淘商城-第四天(非原创)

    文章大纲 一.课程介绍二.今日内容介绍三.参考资料下载四.参考文章 一.课程介绍 一共14天课程(1)第一天:电商行业的背景.淘淘商城的介绍.搭建项目工程.Svn的使用.(2)第二天:框架的整合.后台 ...

  2. 学习笔记 第十三章 使用CSS3新布局

    第13章   使用CSS3新布局 [学习重点] 设计多列布局 设计弹性盒布局样式 使用CSS3布局技术设计适用移动需求的网页 13.1  多列布局 CSS3使用columns属性定义多列布局,用法如下 ...

  3. .NET 微信开发之 获取用户数据

    通过微信接口获取用户信息主要分为以下几个步骤: a.获取公众号的access_token b.通过查询所有用户OPenid接口获取所有用户. string url = "https://ap ...

  4. 使用RecyclerView

    tags: 新建,模板,小书匠 RecyclerView 是 Android 团队新推出的控件,不仅能轻松实现 ListView 的同样的效果,还优化了 ListView 中许多不足之处. 目前 An ...

  5. scala.的Enumeration枚举示例(转)

    简介 在scala中没有枚举类型,但在标准类库中提供了Enumeration类来产出枚举.扩展Enumeration类后,调用value方法类初始化枚举中的可能值. 内部类value实际上是一个抽象类 ...

  6. iOS Programming Controlling Animations 动画

    iOS Programming Controlling Animations 动画 The word "animation" is derived from a Latin wor ...

  7. 用yunio网盘搭建git私有仓库

      研究生开始奔波于教研室和寝室之间,于是想搭建一个git私有仓库来管理自己在做的项目或者学习资料.一来可以很方便的管理项目,二来可以学习使用git.我的主要工作平台是Linux,这也是我选择yuni ...

  8. 【PostgreSQL-9.6.3】一般视图

    PG视图分为两种,一种是物化视图,一种是一般视图.本篇文章主要写一般视图哪些事儿.所谓一般视图,通俗点说,就是由查询语句定义的虚拟表.视图中的数据可能来自一张或多张表. 1. 视图创建语句 CREAT ...

  9. CSS中常用属性之字体属性

    1,以下是CSS中常用字体属性: font-family             字体样式 font-size                字体大小 font-size-adjust  为元素规定 ...

  10. 深入理解java虚拟机---垃圾收集器和分配策略-1

    博文重点: 学习目标:哪些内存需要回收 什么时候回收    如何回收 在基于概念讨论的模型中,主要对Java堆和方法区进行讨论. why?:一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个 ...