……我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了……

就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000005,p[]={11261,19997,22877,21893,14843};
long long n,m,a[110][10],cnt[N];
bool f[N][10];
char s[N];
bool clc(int v,int j)
{
long long r=0;
for(int i=n;i>=0;--i)
r=(r*v+a[i][j])%p[j];
return r!=0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i)
{
scanf("%s",s);
int len=strlen(s),fl=1;
for(int l=0;l<len;++l)
{
if(s[l]=='-')
fl=-1;
else
for(int j=0;j<5;++j)
a[i][j]=(a[i][j]*10+s[l]-'0')%p[j];
}
if(fl==-1)
for(int j=0;j<5;++j)
a[i][j]=p[j]-a[i][j];
}
for(int j=0;j<5;++j)
for(int i=0;i<p[j];++i)
f[i][j]=clc(i,j);
for(int i=1;i<=m;++i)
{
bool fl=1;
for(int j=0;j<5;++j)
if(f[i%p[j]][j])
{
fl=0;
break;
}
if(fl)
cnt[++cnt[0]]=i;
}
printf("%d\n",cnt[0]);
for(int i=1;i<=cnt[0];++i)
printf("%d\n",cnt[i]);
return 0;
}

bzoj 3751: [NOIP2014]解方程【数学】的更多相关文章

  1. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  2. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  3. bzoj 3751: [NOIP2014]解方程

    Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...

  4. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  5. 【BZOJ】3751: [NOIP2014]解方程

    题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...

  6. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  7. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  8. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  9. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

随机推荐

  1. Python闭包函数

    闭包 闭包:python中的闭包从表现形式上定义(解释)为: 如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 先看一个函数: ...

  2. UVA 10200 Prime Time【暴力,精度】

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  3. CodeForces 597A Divisibility

    水题. #include<iostream> #include<cstring> #include<cmath> #include<queue> #in ...

  4. 外排序 & 败者树 & 多路归并-学习

    来来来,根据这篇文章,学一下败者树吧: http://blog.csdn.net/whz_zb/article/details/7425152 一.胜者树 胜者树的一个优点是,如果一个选手的值改变了, ...

  5. 再说javascript 的__proto__ 和prototype 属性

    过了一段时间,没写 原生的 javascript 的了,感觉天天在用框架写代码,框架写代码完全限定死了你所需要思考的东西,只是在处理一些业务逻辑,真正的代码 都感觉不会写了. 突然发现,框架用的不熟悉 ...

  6. MySQL Study之--MySQL用户及权限管理

    MySQL Study之--MySQL用户及权限管理     MySQLserver通过MySQL权限表来控制用户对数据库的訪问.MySQL权限表存放在mysql数据库里.由mysql_install ...

  7. Redis Server分布式缓存编程

    这篇文章我将介绍如果用最简洁的方式配置Redis Server, 以及如何使用C#和它交互编程 一. 背景介绍 Redis是最快的key-value分布式缓存之一 缺点: 没有本地数据缓冲, 目前还没 ...

  8. 程序C++ to C#交互

    第一次用C#调用C/C++生成的DLL文件,感觉有点新鲜,事实上仅仅是实现了执行在公共语言执行库 (CLR) 的控制之外的"非托管代码"(执行在公共语言执行库(CLR)的控制之中的 ...

  9. ecshop广告宽度值必须在1到1024之间的解决方法

    ecshop加广告出现广告位的宽度值必须在1到1024之间的解决方法,这个问题是今天刚刚发现的,我就郁闷了,如今1024宽度的广告能做什么.你看看京东,天猫,非常多都是大型的横幅广告,这点ecshop ...

  10. HDU 4277 USACO ORZ(暴力+双向枚举)

    USACO ORZ Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...