传送门

区间dp,记\(dp(l,r,t)\)表示区间\((l,r)\),\(t\)表示这个区间中能不能放\(M\)。如果可以,枚举中间哪里放\(M\)来压缩。也可以不压缩,后面直接跟上去。如果左右重复的,尝试压缩一下,那么循环节里是不能放的

//minamoto
#include<bits/stdc++.h>
using namespace std;
const int N=55,inf=0x3f3f3f3f;
char s[N];int f[N][N][2],n;
bool same(int L,int R){
if((R-L+1)&1)return false;int M=(R-L+1)>>1;
for(int i=L;i<L+M;++i)if(s[i]!=s[i+M])return false;return true;
}
int solve(int L,int R,bool is){
if(L==R)return 1;if(f[L][R][is])return f[L][R][is];int res=inf;
if(is)for(int i=L;i<R;++i)res=min(res,1+solve(L,i,1)+solve(i+1,R,1));
for(int i=L;i<R;++i)res=min(res,solve(L,i,is)+R-i);
if(same(L,R))res=min(res,solve(L,(L+R)>>1,0)+1);return f[L][R][is]=res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%s",s+1);n=strlen(s+1);
printf("%d\n",solve(1,n,1));return 0;
}

P2470 [SCOI2007]压缩的更多相关文章

  1. luogu P2470 [SCOI2007]压缩

    传送门 dalao们怎么状态都设的两维以上啊?qwq 完全可以一维状态的说 设\(f[i]\)为前缀i的答案,转移就枚举从前面哪里转移过来\(f[i]=min(f[j-1]+w(j,i))(j\in ...

  2. 洛谷P2470 [SCOI2007]压缩(区间dp)

    题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...

  3. BZOJ1068: [SCOI2007]压缩

    ... 1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 909  Solved: 566[Submit][Statu ...

  4. bzoj 1068: [SCOI2007]压缩 DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 496  Solved: 315[Submit][Status] D ...

  5. bzoj 1068 [SCOI2007]压缩 区间dp

    [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1644  Solved: 1042[Submit][Status][Discu ...

  6. [SCOI2007]压缩(动态规划,区间dp,字符串哈希)

    [SCOI2007]压缩 状态:设\(dp[i][j]\)表示前i个字符,最后一个\(M\)放置在\(j\)位置之后的最短字串长度. 转移有三类,用刷表法来实现. 第一种是直接往压缩串后面填字符,这样 ...

  7. 【洛谷P2470】[SCOI2007]压缩

    压缩 #include<iostream> #include<cstring> #include<cstdio> using namespace std; #def ...

  8. 洛谷P2470||bzoj1068 [SCOI2007]压缩

    bzoj1068 洛谷P2470 区间dp入门题?只要注意到每个M“管辖”的区间互不相交即可 错误记录:有点小坑,比如aaaacaaaac最优解为aRRcR(意会坑在哪里),踩了一次 #include ...

  9. BZOJ 1068: [SCOI2007]压缩

    Sol 区间DP.这个区间DP需要三维, \(f[i][j][k]\) 表示\([i,j]\) 这个区间中是否存在 \(M\) . 转移有两种,一种是这个区间存在 \(M\) ,那么直接枚举 \(M\ ...

随机推荐

  1. HDU-3790最短路径问题,第十遍终于过了~

    最短路径问题                                                                   Time Limit: 2000/1000 MS (J ...

  2. [K/3Cloud] 理解BOS关于Enabled属性的表决器原理

    通常的编程中,我们习惯: btnOK.Enabled = true; 这个样子就会将按钮变成有效,反之亦然.但在ERP的表单中,其某个按钮或字段其有效性及其复杂,例如一个表格中某个数量单元格其有效性是 ...

  3. 【SGU194&ZOJ2314】Reactor Cooling(有上下界的网络流)

    题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流 ...

  4. SharedPreferences保存用户偏好参数

    package com.example.administrator.myapplication; import android.content.Context; import android.cont ...

  5. socker地址API

    大端字节序是指一个整数的高位字节存储在内存的低地址处,低位字节存储在内存的高地址处.小端字节序是指整数的高位字节存储在内存的高地址处,低位字节则存储在内存的低地址处. 现代pc大多采用小端字节序,故小 ...

  6. java编程思想-复用类(2)

    如果java的基类拥有某个已被多次重载的方法名称,那么在导出类中重新定义该方法名称并不会屏蔽其在基类中的任何版本(这一点与C++不同) class Homer { char doh(char c) { ...

  7. 正则表达式的捕获组(capture group)在Java中的使用

    原文:http://blog.csdn.net/just4you/article/details/70767928 ------------------------------------------ ...

  8. Wordpress3.9开启多网站配置配置nginx进行局域网測试.

    由于须要帮staff迁移一些数据, 所以想到了使用wordpress的多网站. 这个功能在wordpress3.0后就有了. 软件系统等信息:  OS: linux debian wheezy php ...

  9. 逆向碰到3des分析

    1.ios 某个app碰到涉及3des的解密函数. 2.底层调用的库函数. 3.对比CCCrypt的头文件 CCCryptorStatus CCCrypt( CCOperation op, /* kC ...

  10. Struts数据验证

    Action类继承了ActionSupport类,而该类实现了Action.Validateable.ValidationAware.TextProvider.LocaleProvider和Seria ...