球形空间产生器

【问题描述】

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

【输入格式】

第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

【输出格式】

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

【样例输入】

2

0.0 0.0

-1.0 1.0

1.0 0.0

【样例输出】

0.500 1.500

【样例解释】

提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )


题解:

将球心坐标作为未知数,解方程

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
int n, now = , found;
double x, v, cc[], gs[][];
int main()
{
scanf("%d", &n);
for(int i = ; i <= n; ++i) scanf("%lf", &cc[i]);
for(int i = ; i <= n; ++i)
for(int k = ; k <= n; ++k)
{
scanf("%lf", &x);
gs[i][k] = * (x - cc[k]);
gs[i][n + ] += x * x - cc[k] * cc[k];
}
for(int i = ; i <= n; ++i)
{
for(found = now; found <= n; ++found)
if(fabs(gs[found][i]) > 0.000001) break;
if(found > n) continue;
if(found != now)
for(int k = ; k <= n + ; ++k)
swap(gs[now][k],gs[found][k]);
v = gs[now][i];
for(int k = ; k <= n + ; ++k) gs[now][k] /= v;
for(int k = ; k <= n; ++k)
if(k != now)
{
v = gs[k][i];
for(int l = ; l <= n + ; ++l)
gs[k][l] -= v * gs[now][l];
}
++now;
}
for(int i = ; i < n; ++i) printf("%.3lf ", gs[i][n + ]);
printf("%.3lf\n", gs[n][n + ]);
}

球形空间产生器 BZOJ 1013的更多相关文章

  1. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  2. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  3. [BZOJ 1013] [JSOI2008]球形空间产生器

    [BZOJ 1013] [JSOI2008]球形空间产生器 题面 给出一个n维球体上的n+1个点,求球心坐标 分析 设球心坐标为\((x_1,x_2,\dots x_n)\),由于一个球体上的所有点到 ...

  4. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  5. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  6. BZOJ 1013 球形空间产生器

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  7. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  8. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

  9. 【BZOJ 1013】球形空间产生器sphere(高斯消元)

    球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^ ...

随机推荐

  1. Burpsuite1.7.03网站渗透神器最新破解版

    众所周知,Burp Suite是响当当的web应用程序渗透测试集成平台.从应用程序攻击表面的最初映射和分析, 到寻找和利用安全漏洞等过程,所有工具为支持整体测试程序而无缝地在一起工作. 平台中所有工具 ...

  2. VC-基础:VC中得到当前系统的时间和日期

    得到当前时间的方法一般都是得到从1900年0点0分到现在的秒数,然后转为年月日时分秒的形式得到当前的时间(时分秒).主要方法如下: 1)使用CRT函数 C++代码   ]; time_t nowtim ...

  3. python-DB模块实例

    MySQLdb其实有点像php或asp中连接数据库的一个模式了,只是MySQLdb是针对mysql连接了接口,我们可以在python中连接MySQLdb来实现数据的各种操作. python连接mysq ...

  4. C# 队列Queue

    using System; using System.Collections.Generic; using System.Linq; namespace Queue测试 { class Program ...

  5. Bootstrap 网格系统(Grid System)实例2

    Bootstrap 网格系统(Grid System):堆叠水平,两种样式 <!DOCTYPE html><html><head><meta http-equ ...

  6. Spring框架bean的注解管理方法之一 使用注解生成对象

    首先在原有的jar包: 需Spring压缩包中的四个核心JAR包 beans .context.core 和expression 下载地址: https://pan.baidu.com/s/1qXLH ...

  7. ios之UIButoon

    第一.UIButton的定义 UIButton *button=[[UIButton buttonWithType:(UIButtonType); 能够定义的button类型有以下6种, typede ...

  8. CF-1099 D. Sum in the tree

    CF-1099 D. Sum in the tree 题意:结点序号为 1~n 的一个有根树,根序号为1,每个点有一个权值a[i], 然后定义一s[i]表示从根节点到 结点序号为i的结点的路途上所经过 ...

  9. phpstorm设置方法头信息备注

    一.目标,如下图,希望在方法上增加如下头信息备注 二.设置live template: 三.增加方法头信息备注,如下所示: * created by ${USER} at ${DATE} ${TIME ...

  10. 三段式fsm

    1.状态转移的always中CS,同步ouput的always中NS. 2.3段fsm vs 2段fsm:output逻辑是组合逻辑和同步时序逻辑(消除里不稳的和毛刺). 3.3段fsm vs 1段f ...