Longge的问题(bzoj 2705)
Description
Input
Output
Sample Input
Sample Output
HINT
【数据范围】
对于60%的数据,0<N<=2^16。
对于100%的数据,0<N<=2^32。
/*
想了很长时间,实在没想出怎么做。
正解貌似很简单,设k=gcd(i,n),那么1=gcd(i/k,n/k),那么如果我们知道了K,可以用欧拉函数解出i的个数,把所有i的个数加起来就行了,
至于枚举K,就是枚举n的因数。
*/
#include<cstdio>
#include<iostream>
#define lon long long
using namespace std;
lon n,ans;
lon oula(lon x){
lon res=x,a=x;
for(lon i=;i*i<=a;i++){
if(a%i==){
res-=res/i;//res=res*(1-1/i)
while(a%i==) a/=i;
}
}
if(a>) res-=res/a;
return res;
}
int main(){
cin>>n;
for(lon i=;i*i<=n;i++){
if(n%i) continue;
ans+=oula(n/i)*i;
if(i*i!=n) ans+=oula(i)*(n/i);
}
cout<<ans;
}
Longge的问题(bzoj 2705)的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- [BZOJ 2705] [SDOI 2012] Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数 \(N\),你需要求出 \(\sum gcd(i, N)(1\le i \le N ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
随机推荐
- 洛谷 P1276 校门外的树(增强版)
题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...
- 融云参加RTC实时互联网大会 现场集成IM SDK
9月21至22日,由全球实时云服务商声网Agora.io主办的RTC2017实时互联网大会在北京万豪酒店成功举办.作为亚洲最权威的RTC实时通信行业技术盛会,会议吸引了来自全球上千名开发者参加,Goo ...
- HDU 6052 To my boyfriend(容斥+单调栈)
题意:对于一个n*m的方格,每个格子中都包含一种颜色,求出任意一个矩形包含不同颜色的期望. 思路: 啊啊啊啊啊,补了两天,总算A了这道题了,简直石乐志,前面的容斥还比较好写,后面的那个>13那个 ...
- Linux部署多个tomcat
Linux部署多个tomcat 1.环境:1.1. Centos 5.01.2.Tomcat 5.5.17 2.需要解决一下几个问题2.1.不同的tomcat启动和关闭监听不同的端口2.2.不同的to ...
- rsync文档
rsync文档 1.rsync filter过滤 参考http://share.blog.51cto.com/278008/567578/
- React初识整理(三)--受控组件解决方法
1. 受控组件:组件处于受控制状态,不可更改输入框内的值. 2. 什么情况下会让组件变成受控组件? - 文本框设置了value属性的时候 - 单选框或多选框设置了checked属性的时候. 3. 如何 ...
- 如何优化sql查询
借鉴https://www.cnblogs.com/ssrstm/p/5753068.html和https://www.cnblogs.com/exe19/p/5786806.html 1. 对查询进 ...
- mem之读操作调式总结(跟入栈出栈有关)
现象: 1.当case比较复杂的时候(含有for循环对mem进行读/写) 发现for循环时总是有汇编指令不执行跳过去了,(其实是汇编不熟和指令太多无法理智分析指令了). 事实是指令是对的,但执行错了( ...
- shell-code-3-echo用法&printf用法
××××××××××××××××××××××××××××××下面是echo××××××××××××××××××××××××××××××× # read 命令从标准输入(即执行时,键盘的输入)中读取一行 ...
- 对linux中source,fork,exec的理解以及case的 使用
fork 使用 fork 方式运行 script 时, 就是让 shell(parent process) 产生一个 child process 去执行该 script, 当 child proc ...