Longge的问题(bzoj 2705)
Description
Input
Output
Sample Input
Sample Output
HINT
【数据范围】
对于60%的数据,0<N<=2^16。
对于100%的数据,0<N<=2^32。
/*
想了很长时间,实在没想出怎么做。
正解貌似很简单,设k=gcd(i,n),那么1=gcd(i/k,n/k),那么如果我们知道了K,可以用欧拉函数解出i的个数,把所有i的个数加起来就行了,
至于枚举K,就是枚举n的因数。
*/
#include<cstdio>
#include<iostream>
#define lon long long
using namespace std;
lon n,ans;
lon oula(lon x){
lon res=x,a=x;
for(lon i=;i*i<=a;i++){
if(a%i==){
res-=res/i;//res=res*(1-1/i)
while(a%i==) a/=i;
}
}
if(a>) res-=res/a;
return res;
}
int main(){
cin>>n;
for(lon i=;i*i<=n;i++){
if(n%i) continue;
ans+=oula(n/i)*i;
if(i*i!=n) ans+=oula(i)*(n/i);
}
cout<<ans;
}
Longge的问题(bzoj 2705)的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- [BZOJ 2705] [SDOI 2012] Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数 \(N\),你需要求出 \(\sum gcd(i, N)(1\le i \le N ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
随机推荐
- 解决Starting to watch source with Jekyll and Compass. Starting Rack on port 4000
问题 Starting to watch source with Jekyll and Compass. Starting Rack on port 4000 rake aborted! Errno: ...
- UVA 10003 cuting sticks 切木棍 (区间dp)
区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...
- WPF知识点全攻略02- WPF体系结构
WPF体系结构图: PersentationFramework.dll包含WPF顶层的类型,包括哪些表示窗口.面板以及其他类型控件的类型.他还实现了高层编程抽象,如样式.开发人员直接使用的大部分类都来 ...
- C语言数组_04
概念:数组是在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来的一种形式.这些按序排列的同类数据元素的集合称为数组.在C语言中,数组属于构造数据类型.一个数组可以分解为多个数组 ...
- js的命令模式
命令模式: 什么叫命令模式: 将一个请求封装成一个对象,从而让你使用不同的请求把客户端参数化,对请求排队或者记录请求日志,可以提供命令的撤销和恢复功能. 命令模式主要有四个部分: 命令对象(comma ...
- AT2172 Shik and Travel
题目描述: luogu 题解: 二分+暴力$vector$+$dfs$. 记录下所有可能的子树内合法方案,双指针+归并合并. 代码: #include<vector> #include&l ...
- bzoj5138 [Usaco2017 Dec]Push a Box
题目描述: bz luogu 题解: 暴力可以记录$AB$位置转移,这个时候状态是$n^4$的,无法接受. 考虑只记录$A$在$B$旁边时的状态,这个时候状态时$n^2$的. 所以说转移有两种,一种是 ...
- 【计算机网络】DNS的作用以及修改DNS的方法
1.DNS的作用及修改DNS的方法 1.1.DNS的作用 DNS就是将域名映射成ip的分布式数据库服务器,它的作用如下图: 1.2.修改DNS的方法 常用的DNS服务器 1.114.114.114.1 ...
- input标签内容改变触发的事件
原生方法 onchange事件 <input type="text" onchange="onc(this)"> function onc(data ...
- laravel中的gate
public function boot(){ $this->registerPolicies(); Gate::define('update-post',function($user,$pos ...