常用字符串匹配算法(brute force, kmp, sunday)
1. 暴力解法
// 暴力求解
int Idx(string S, string T){
// 返回第一个匹配元素的位置,若没有匹配的子串,则返回-1
int S_size = S.length();
int T_size = T.length();
if(S_size == T_size && S_size == )
return ;
if(S_size < T_size)
return -; int head = ;
int i = head;
int j = ; while(i < S_size && j < T_size){
if(S[i] == T[j]){
++i;
++j;
if(j == T_size && i <= S_size)
return head;
}
else{
++head;
i = head;// i回溯, 在kmp算法中,i不会出现回溯,即i值不会减小
j = ;
}
}
return -;
}
2. KMP (包括返回第一个匹配字符串的位置和返回所有匹配字符串的位置)
void PartialMatchTable(string s, int next[]){
int len = s.length();
next[] = -;
int i = ;
int j = -;
while(i < len){
if(j == - || s[i] == s[j]){
++i;
++j;
next[i] = j;
}
else
j = next[j];
}
}
int kmp(string s, string p){
int s_size = s.length();
int p_size = p.length();
int next[p_size];
PartialMatchTable(p, next);
int i = ;
int j = ;
while(i < s_size && j < p_size){
if(j == - || s[i] == p[j]){
i++;
j++;
}
else{
j = next[j];
}
}
if(j == p_size)
return i-j;
else
return -;
}
// kmp_vec(string s, string p)找出所有匹配位置
vector<int> kmp_vec(string s, string p){
int s_size = s.length();
int p_size = p.length();
vector<int> pos;
int next[p_size];
PartialMatchTable(p, next);
int i = ;
int j = ;
while(i < s_size && j < p_size){
if(j == - || s[i] == p[j]){
i++;
j++;
if(j == p_size){
pos.push_back(i-j);
j = ;
}
}
else{
j = next[j];
}
}
if(pos.size() == )
pos.push_back(-);
return pos;
}
3. Sunday
int SundaySearch(string t, string p){
int t_size = t.size();
int p_size = p.size();
if(p_size <= || t_size <= )
return -;
int i = , j = ;
int k;
int m = p_size;
while(i < t_size){
if(t[i] != p[j]) {// 不相等
for(k = p_size-; k>=; --k) {
if(p[k] == t[m])
break;
}
// i = i + p_size - k;
i = m - k;
j = ;
m = i + p_size;
}
else { // 相等,比较下一个字符
i++;
j++;
if(j == p_size)
return i-j;
}
}
return -;
}
4. 完整代码
/*
* @Author: z.c.wang
* @Email: iwangzhengchao@gmail.com
* @Last Modified time: 2019-01-23 14:39:58
*/
#include<iostream>
#include<string>
using namespace std; /**
* 方法1. brute force
* 方法2. KMP (kmp_next, kmp_dfa)
* 方法3. Sunday
*/ /**
* brute_force description:
* 暴力求解,在字符串s中匹配字符串p
* @param t [text, 文本串]
* @param p [pattern, 模式串]
* @return [若s含有p, 则返回第一个匹配的位置,否则,返回-1]
*/
int brute_force(string t, string p){
int t_size = t.length();
int p_size = p.length();
if(t_size == p_size && t_size == )
return ;
if(t_size < p_size)
return -; int head = ;
int i = head;
int j = ;
while(i < t_size && j < p_size){
if(t[i] == p[j]){
i++;
j++;
if(j == p_size && i <= t_size)
return head;
}
else{
head++;
i = head;
j = ;
}
}
return -;
} // 暴力求解的另一种写法
int brute_force2(string t, string p){
int t_size = t.length();
int p_size = p.length(); if(t_size == p_size && t_size == )
return ;
if(t_size < p_size)
return -; int i, j;
for(i = , j = ; i < t_size && j < p_size; i++){
if(t[i] == p[j]){
j++;
}
else{
i -= j;
j = ;
}
}
if(j == p_size) // 找到匹配
return i - j;
else // 为找到匹配
return -;
} /**
* ParticalMatchTable description:
* 对字符串p生成next数组
* @param p [pattern string]
* @param next [next数组]
*/
void ParticalMatchTable(string p, int next[]){
int i = ;
int j = -;
next[] = -; while(i < p.length()){
if(j == - || p[i] == p[j]){
i++;
j++;
next[i] = j;
}
else{
j = next[j];
}
}
} /**
* kmp algorithm based on next
* kmp_next algorithm
* @param t [text string]
* @param p [pattern string]
* @return [若s含有p, 则返回第一个匹配的位置,否则,返回-1]
*/
int kmp_next(string t, string p){
int t_size = t.length();
int p_size = p.length();
int next[p_size];
ParticalMatchTable(p, next); int i = ;
int j = ;
while(i < t_size && j < p_size){
if(j == - || t[i] == p[j]){
i++;
j++;
}
else{
j = next[j];
}
}
if(j == p_size)
return i-j;
else
return -;
} /*kmp algorithm based on dfa */
int kmp_dfa(string t, string p){
int row = ;
int col = p.length(); // 动态分配数组并初始化
int** dfa = new int*[row];
for(int i = ; i < row; i++)
dfa[i] = new int[col];
for(int i = ; i < row ; i++)
for(int j = ; j < col; j++)
dfa[i][j] = ; // 计算dfa
dfa[p[]][] = ;
for (int j = , x = ; j < col; ++j) {
for (int i = ; i < row; ++i)
dfa[i][j] = dfa[i][x];
dfa[p[j]][j] = j + ;
x = dfa[p[j]][x];
} // kmp algo
int i, j;
int t_size = t.length();
int p_size = p.length();
for (i = , j = ; i < t_size && j < p_size; i++){
j = dfa[t[i]][j];
}
if(j == p_size)
return i-j;
else
return -;
} /**
* [Sunday description]
* @param t [description]
* @param p [description]
* @return [description]
*/
int Sunday(string t, string p){
int t_size = t.length();
int p_size = p.length();
if(p_size == t_size && t_size == )
return ;
if(p_size < || t_size < )
return -; int i = ;
int j = ;
int k;
int m = p_size;
while(i < t_size){
if(t[i] != p[j]){
for(k = p_size-; k >= ; --k){
if(p[k] == t[m])
break;
}
i = m - k;
j = ;
m = i + p_size;
}
else{
i++;
j++;
if(j == p_size)
return i-j;
}
}
return -;
} /**
* [main description]
* @param argc [description]
* @param argv [description]
* @return [description]
*/
int main(int argc, char const *argv[])
{
string t = "bbc abcdab abcdabcdabde";
string p = "abcdabd";
// brute force
cout<<"brute_force : "<<brute_force(t, p)<<endl;
// kmp_next
cout<<"kmp_next : "<<kmp_next(t, p)<<endl;
// kmp_dfa
cout<<"kmp_dfa : "<<kmp_dfa(t, p)<<endl;
// Sunday
cout<<"Sunday : "<<Sunday(t, p)<<endl;
cout<<endl;
return ;
}
5. 运行结果
brute_force :
kmp_next :
kmp_dfa :
Sunday :
6. 资料
D.M. Sunday: A Very Fast Substring Search Algorithm. Communications of the ACM
July. 从头到尾彻底理解KMP(2014年8月22日版)
常用字符串匹配算法(brute force, kmp, sunday)的更多相关文章
- 字符串匹配算法——BF、KMP、Sunday
一:Brute force 从源串的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到源串的第二个字符,重复上述步骤,直到整个模式串在源串中找到匹 ...
- 数据结构(十六)模式匹配算法--Brute Force算法和KMP算法
一.模式匹配 串的查找定位操作(也称为串的模式匹配操作)指的是在当前串(主串)中寻找子串(模式串)的过程.若在主串中找到了一个和模式串相同的子串,则查找成功:若在主串中找不到与模式串相同的子串,则查找 ...
- 字符串匹配算法BF和KMP总结
背景 来看一道leetcode题目: Implement strStr(). Returns the index of the first occurrence of needle in haysta ...
- 动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!
前言 上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看). 这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收 ...
- Python 细聊从暴力(BF)字符串匹配算法到 KMP 算法之间的精妙变化
1. 字符串匹配算法 所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串.如在字符串 "ABCDEFG" 中查找是否存在 "EF" ...
- 字符串匹配算法 - KMP
前几日在微博上看到一则微博是说面试的时候让面试者写一个很简单的字符串匹配都写不出来,于是我就自己去试了一把.结果写出来的是一个最简单粗暴的算法.这里重新学习了一下几个经典的字符串匹配算法,写篇文章以巩 ...
- 字符串模式匹配算法--BF和KMP详解
1,问题描述 字符串模式匹配:串的模式匹配 ,是求第一个字符串(模式串:str2)在第二个字符串(主串:str1)中的起始位置. 注意区分: 子串:要求连续 (如:abc 是abcdef的子串) ...
- KMP单模快速字符串匹配算法
KMP算法是由Knuth,Morris,Pratt共同提出的算法,专门用来解决模式串的匹配,无论目标序列和模式串是什么样子的,都可以在线性时间内完成,而且也不会发生退化,是一个非常优秀的算法,时间复杂 ...
- 字符串匹配算法——KMP算法学习
KMP算法是用来解决字符串的匹配问题的,即在字符串S中寻找字符串P.形式定义:假设存在长度为n的字符数组S[0...n-1],长度为m的字符数组P[0...m-1],是否存在i,使得SiSi+1... ...
随机推荐
- 为什么选择SSM+Redis框架开发模式?
1.选择spring 目前企业的java应用中,spring框架是必须的,spring的核心是IOC(控制反转),它是一个大容器,方便组装和管理各类系统内外部资源,同时支持AOP(控制反转),这是对面 ...
- 2019年BAT面试通关宝典:数据结构+JVM+并发编程+分布式...
前言 金三银四俗称跳槽黄金季,很多同学都想趁着这段时间拿高薪,去更牛逼的公司工作,认识更多大牛,提升自己的职场竞争力. 那怎样才能通过BAT面试官的考核?怎样成为一名Offer收割机? 收割Offer ...
- python 蓝牙模块pybluz安装
最近项目运用了蓝牙,所以来学一学蓝牙. 经过查阅,知道python的蓝牙模块是pybluz,然后老管理进行安装 出错,提示“Could not find the Windows Platform SD ...
- ulimit资源配置
基本理解 linux对每个用户能使用的系统资源有一定限制.如果没有限制,在多用户登录,并且都消耗大量资源时,对系统产生复杂的影响.ulimit内建一套参数,来规定一个用户能使用多少资源. [root@ ...
- python之处理json
import json# json串就是字符串dic={ 'car':{'color':'red','price':100,'count':50}, 'iphone':{'color':'骚粉色',' ...
- 2018 ACM-ICPC亚洲区域赛(青岛)
Problem C---zoj 4060 Flippy Sequence 解题思路:要求进行两次操作,每次操作选择一个区间,问将s串变成t串中所选的两个区间构成的4元组有多少个.做法:找出s串与t串不 ...
- Hibernate通过实体对象对应数据库表信息
Hibernate通过实体对象对应数据库表信息,包括:数据库表名称.主键列名.非主键列名等. 获取对象映射缓存管理类: AbstractEntityPersister aep = (AbstractE ...
- hibernate Day1
1 Web内容回顾(1) JavaEE三层架构web层(struts2框架)service层(spring框架)dao层(hibernate框架):负责对数据库进行CRUD操作(2) MVC模式(这是 ...
- HAL之EXIT
在STM32cubeMX中 1 在GPIO管脚上选定EXIT功能 2 在GPIO模式中设定触发边沿类型 3 在NVIC中设定NVIC分组及使能EIXT_Line0_interrupt 在MDK中的GP ...
- (022)[工具软件]图片浏览 JPEGView
JPEGView是一款小巧绿色快速的图像浏览工具,并且支持全屏或窗口模式.主页地址: https://sourceforge.net/projects/jpegview/JPEGView软件小巧,但功 ...