kafka客户端发布record(消息)
kafka客户端发布record(消息)到kafka集群。
新的生产者是线程安全的,在线程之间共享单个生产者实例,通常单例比多个实例要快。
一个简单的例子,使用producer发送一个有序的key/value(键值对),放到java的main方法里就能直接运行,
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for(int i = 0; i < 100; i++)
producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(i), Integer.toString(i)));
producer.close();
生产者的缓冲空间池保留尚未发送到服务器的消息,后台I/O线程负责将这些消息转换成请求发送到集群。如果使用后不关闭生产者,则会泄露这些资源。
send()方法是异步的,添加消息到缓冲区等待发送,并立即返回。生产者将单个的消息批量在一起发送来提高效率。
ack是判别请求是否为完整的条件(就是是判断是不是成功发送了)。我们指定了“all”将会阻塞消息,这种设置性能最低,但是是最可靠的。
retries,如果请求失败,生产者会自动重试,我们指定是0次,如果启用重试,则会有重复消息的可能性。
producer(生产者)缓存每个分区未发送消息。缓存的大小是通过 batch.size 配置指定的。值较大的话将会产生更大的批。并需要更多的内存(因为每个“活跃”的分区都有1个缓冲区)。
默认缓冲可立即发送,即遍缓冲空间还没有满,但是,如果你想减少请求的数量,可以设置linger.ms大于0。这将指示生产者发送请求之前等待一段时间,希望更多的消息填补到未满的批中。这类似于TCP的算法,例如上面的代码段,可能100条消息在一个请求发送,因为我们设置了linger(逗留)时间为1毫秒,然后,如果我们没有填满缓冲区,这个设置将增加1毫秒的延迟请求以等待更多的消息。需要注意的是,在高负载下,相近的时间一般也会组成批,即使是 linger.ms=0。在不处于高负载的情况下,如果设置比0大,以少量的延迟代价换取更少的,更有效的请求。
buffer.memory 控制生产者可用的缓存总量,如果消息发送速度比其传输到服务器的快,将会耗尽这个缓存空间。当缓存空间耗尽,其他发送调用将被阻塞,阻塞时间的阈值通过max.block.ms设定,之后它将抛出一个TimeoutException。
key.serializer和value.serializer示例,将用户提供的key和value对象ProducerRecord转换成字节,你可以使用附带的ByteArraySerializaer或StringSerializer处理简单的string或byte类型。
send()
public Future<RecordMetadata> send(ProducerRecord<K,V> record,Callback callback)
异步发送一条消息到topic,并调用callback(当发送已确认)。
send是异步的,并且一旦消息被保存在等待发送的消息缓存中,此方法就立即返回。这样并行发送多条消息而不阻塞去等待每一条消息的响应。
发送的结果是一个RecordMetadata,它指定了消息发送的分区,分配的offset和消息的时间戳。如果topic使用的是CreateTime,则使用用户提供的时间戳或发送的时间(如果用户没有指定指定消息的时间戳)如果topic使用的是LogAppendTime,则追加消息时,时间戳是broker的本地时间。
由于send调用是异步的,它将为分配消息的此消息的RecordMetadata返回一个Future。如果future调用get(),则将阻塞,直到相关请求完成并返回该消息的metadata,或抛出发送异常。
如果要模拟一个简单的阻塞调用,你可以调用get()方法。
byte[] key = "key".getBytes();
byte[] value = "value".getBytes();
ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("my-topic", key, value)
producer.send(record).get();
完全无阻塞的话,可以利用回调参数提供的请求完成时将调用的回调通知。
ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("the-topic", key, value);
producer.send(myRecord,
new Callback() {
public void onCompletion(RecordMetadata metadata, Exception e) {
if(e != null)
e.printStackTrace();
System.out.println("The offset of the record we just sent is: " + metadata.offset());
}
});
发送到同一个分区的消息回调保证按一定的顺序执行,也就是说,在下面的例子中 callback1 保证执行 callback2 之前:
producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key1, value1), callback1);
producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key2, value2), callback2);
注意:callback一般在生产者的I/O线程中执行,所以是相当的快的,否则将延迟其他的线程的消息发送。如果你需要执行阻塞或计算昂贵(消耗)的回调,建议在callback主体中使用自己的Executor来并行处理。
kafka客户端发布record(消息)的更多相关文章
- Kafka(分布式发布-订阅消息系统)工作流程说明
Kafka系统架构Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和 ...
- 【.NET+MQTT】.NET6 环境下实现MQTT通信,以及服务端、客户端的双边消息订阅与发布的代码演示
前言: MQTT广泛应用于工业物联网.智能家居.各类智能制造或各类自动化场景等.MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,在很多受限的环境下,比如说机器与机器通信.机器与物联网通信等. ...
- kafka 基础知识梳理-kafka是一种高吞吐量的分布式发布订阅消息系统
一.kafka 简介 今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 ...
- Kafka是分布式发布-订阅消息系统
Kafka是分布式发布-订阅消息系统 https://www.biaodianfu.com/kafka.html Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apa ...
- 分布式发布订阅消息系统 Kafka 架构设计[转]
分布式发布订阅消息系统 Kafka 架构设计 转自:http://www.oschina.net/translate/kafka-design 我们为什么要搭建该系统 Kafka是一个消息系统,原本开 ...
- 分布式发布订阅消息系统Kafka
高吞吐量的分布式发布订阅消息系统Kafka--安装及测试 一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览, ...
- 发布-订阅消息系统Kafka简介
转载请注明出处:http://www.cnblogs.com/BYRans/ Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式 ...
- Kafka — 高吞吐量的分布式发布订阅消息系统【转】
1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...
- Kafka logo分布式发布订阅消息系统 Kafka
分布式发布订阅消息系统 Kafka kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性: 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳 ...
随机推荐
- VC6.0 快捷键
F1: 帮助 Ctrl+O :OpenCtrl+P :PrintCtrl+N :NewCtrl+Shift+F2 :清除所有书签F2 :上一个书签Shift+F2 :上一个书签Alt ...
- tcpdump 探测器分析
注:默认情况下,tcpdump临听它遇见的第一个网络接口,如果它选择了错误的接口,可以-i标志强行指定接口,如果DNS不能用,或者只是不希望tcpdump进行名字查找,请使用-n选项,这个选项(-n) ...
- Jmeter 在什么情况下定义多个thread group?
Jmeter里面有三种线程组:setUp thread group, TearDown thread group, thread group. 如果想定义100个用户登录系统,60个用户做A操作,40 ...
- Thrift之代码生成器Compiler原理及源码详细解析2
我的新浪微博:http://weibo.com/freshairbrucewoo. 欢迎大家相互交流,共同提高技术. 2 t_generator类和t_generator_registry类 这个两 ...
- bzoj 4260 Codechef REBXOR——trie树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4260 一段的异或和就是两个前缀的异或和.正反扫两边,用trie树算每个位置为左/右端点时最大 ...
- IOS造成卡顿的主要原因
1. cellForRowAtIndexPath, 单元格视图重用, 注意尽量让所有视图重用, 只根据单元格row和section的不容更换不同的数据, 而不是每次都生成新的单元格, 这是程序奔溃的前 ...
- Flutter实战视频-移动电商-57.购物车_在Model中增加选中字段
57.购物车_在Model中增加选中字段 先修改model类 model/cartInfo.dart类增加是否选中的属性 修改provide 修改UI部分pages/cart_page/cart_it ...
- Codeforces Round #375 (Div. 2)【A,B【模拟】,D【DFS】】
PS_B:阿洗吧!B题卧槽数组开了250... PS_D:D题主要挂在了50*50口算得了250,数组开小,然后一开始还错了.= =哎,以后对于数据范围还是注意一点: 卧槽,这场可真二百五了... A ...
- c# 中的 protected internal 如何在 vc.net 中实现
c# 中有 protected internal 的复合访问属性, 保证assembly内部访问,以及外部的派生类访问 vc.net 中无法直接写上 protected internal, 其对应的写 ...
- Node.js 内置模块fs(文件系统)
fs模块的三个常用方法 1.fs.readFile() -- 读文件 2.fs.writeFile() -- 写文件 3.fa.stat() -- 查看文件信息 fs模块不同于其它模块的地方是它有异步 ...