题意:

给出一个n × n的矩阵,每个格子中有一个数字代表权值,找出从左上角出发到右下角的两条不相交的路径(起点和终点除外),使得两条路径权值之和最大。

分析:

如果n比较小的话是可以DP的,但是现在n非常大,DP会超时的。

这个用费用流来求解:

因为每个点只能走一次,所以先拆点,两点之间连一条容量为1费用为对应格子权值的边,如果是起点或终点,因为要走两次,所以要连容量为2的边。

对于不同格子之间,如果能到达,连一条容量为INF,费用为0的边。

因为算法求的是最小费用,所以我们把每个格子的相反数当做费用去连边,最后再取相反数。

因为起点和终点容量为2,计算出来的最大权值重复计算了左上角和右下角的权值,所以答案应该再减去这两个数。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std; const int maxn = ;
const int maxnode = maxn * maxn * ;
const int maxm = + ;
const int INF = 0x3f3f3f3f; struct Edge
{
int from, to, cap, flow, cost;
int nxt;
Edge() {}
Edge(int u, int v, int cap, int f, int cost, int nxt):from(u), to(v), cap(cap), flow(f), cost(cost), nxt(nxt) {}
}; int ecnt;
Edge edges[maxm << ];
int head[maxnode]; void AddEdge(int u, int v, int cap, int cost)
{
edges[ecnt] = Edge(u, v, cap, , cost, head[u]);
head[u] = ecnt++;
edges[ecnt] = Edge(v, u, , , -cost, head[v]);
head[v] = ecnt++;
} int row;
int A[maxn][maxn]; int n;
int d[maxnode + ], p[maxnode + ], a[maxnode + ];
bool inq[maxnode + ]; bool SPFA(int s, int t)
{
memset(inq, false, sizeof(inq));
memset(p, -, sizeof(p));
memset(d, 0x3f, sizeof(d));
inq[s] = true;
d[s] = ;
a[s] = INF; queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop(); inq[u] = false;
for(int i = head[u]; ~i; i = edges[i].nxt)
{
Edge& e = edges[i];
int v = e.to;
if(e.flow < e.cap && d[u] + e.cost < d[v])
{
d[v] = d[u] + e.cost;
p[v] = i;
a[v] = min(a[u], e.cap - e.flow);
if(!inq[v]) { inq[v] = true; Q.push(v); }
}
}
} return d[t] != INF;
} int Mincost(int s, int t)
{
int flow = ;
int cost = ;
while(SPFA(s, t))
{
flow += a[t];
cost += d[t] * a[t];
int u = t;
while(u != s)
{
edges[p[u]].flow += a[t];
edges[p[u]^].flow -= a[t];
u = edges[p[u]].from;
}
}
return cost;
} int main()
{
while(scanf("%d", &row) == )
{
for(int i = ; i < row; i++)
for(int j = ; j < row; j++) scanf("%d", &A[i][j]); n = row * row;
int s = , t = n * - ;
ecnt = ;
memset(head, -, sizeof(head)); //build graph
for(int i = ; i < row; i++)
for(int j = ; j < row; j++)
{
int u = i * row + j;
int v = u + n;
int cap = ;
if(u == || u == n - ) cap++;
AddEdge(u, v, cap, -A[i][j]); int w;
if(i < row - )
{
w = u + row;
AddEdge(v, w, INF, );
}
if(j < row - )
{
w = u + ;
AddEdge(v, w, INF, );
}
} n <<= ;
printf("%d\n", -Mincost(s, t) - A[][] - A[row-][row-]);
} return ;
}

代码君

HDU 3376 费用流 Matrix Again的更多相关文章

  1. Going Home HDU - 1533 费用流

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 给一个网格图,每两个点之间的匹配花费为其曼哈顿距离,问给每个的"$m$"匹配到一个&q ...

  2. hdu 5045 费用流

    滚动建图,最大费用流(每次仅仅有就10个点的二分图).复杂度,m/n*(n^2)(n<=10),今年网络赛唯一网络流题,被队友状压DP秒了....难道网络流要逐渐退出历史舞台???.... #i ...

  3. hdu 2686 费用流 / 双线程DP

    题意:给一个方阵,求从左上角出到右下角(并返回到起点),经过每个点一次不重复,求最大获益(走到某处获得改点数值),下来时每次只能向右或向下,反之向上或向左. 俩种解法: 1  费用流法:思路转化:从左 ...

  4. hdu 4406 费用流

    这题问题就是当前时刻究竟选择哪门课程,易知选择是和分数有关的,而且是一个变化的权值,所以能够用拆点的方式,把从基础分到100分都拆成点.但若这样拆点的话,跑费用流时就必须保证顺序.这样就麻烦了..观察 ...

  5. hdu 1853 (费用流 拆点)

    // 给定一个有向图,必须用若干个环来覆盖整个图,要求这些覆盖的环的权值最小. 思路:原图每个点 u 拆为 u 和 u' ,从源点引容量为 1 费用为 0 的边到 u ,从 u' 引相同性质的边到汇点 ...

  6. HDU 3667 费用流 拆边 Transportation

    题意: 有N个城市,M条有向道路,要从1号城市运送K个货物到N号城市. 每条有向道路<u, v>运送费用和运送量的平方成正比,系数为ai 而且每条路最多运送Ci个货物,求最小费用. 分析: ...

  7. HDU 3667 费用流(拆边)

    题意:有n个城市(1~n),m条有向边:有k件货物要从1运到n,每条边最多能运c件货物,每条边有一个危险系数ai,经过这条路的费用需要ai*x2(x为货物的数量),问所有货物安全到达的费用. 思路:c ...

  8. HDU 5644 (费用流)

    Problem King's Pilots (HDU 5644) 题目大意 举办一次持续n天的飞行表演,第i天需要Pi个飞行员.共有m种休假计划,每个飞行员表演1次后,需要休假Si天,并提供Ti报酬来 ...

  9. HDU - 4780费用流

    题意:M台机器要生产n个糖果,糖果i的生产区间在(si, ti),花费是k(pi-si),pi是实际开始生产的时间机器,j从初始化到生产糖果i所需的时间Cij,花费是Dij,任意机器从生产糖果i到生产 ...

随机推荐

  1. 获取jqGrid中选择的行的数据

    下面可以获取选择一行的id,如果你选择多行,那下面的id是最后选择的行的id: var id=$(‘#gridTable’).jqGrid(‘getGridParam’,'selrow’); 如果想要 ...

  2. 对flex-grow和flex-shrink的深入理解

    flex弹性布局,如果子元素宽度之和大于或者小于父元素宽度,空间就会存在剩余和不够,flex默认不换行,除非设置flex-wrap,那么这种情况下,有两个重要的属性,flex-grow和flex-sh ...

  3. window.open()弹出窗口参数说明及居中设置

    window.open()可以弹出一个新的窗口,并且通过参数控制窗口的各项属性. 最基本的弹出窗口代码 window.open('httP://codeo.cn/'); window.open()各参 ...

  4. 零基础逆向工程18_PE结构02_联合体_节表_PE加载过程

    联合体 特点 1.联合体的成员是共享内存空间的 2.联合体的内存空间大小是联合体成员中对内存空间大小要求最大的空间大小 3.联合体最多只有一个成员有效 节表数据结构说明 PE 加载 过程 FileBu ...

  5. Redis、Memcache区别

    Redis.Memcache区别 redis单核 memcahce多核 redis支持数据持久化 redis支持的数据类型比较多 memcache 只有key->value类型 key-> ...

  6. Git入门学习总结

    用了两天时间看完廖雪峰老师的git教程(http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b0 ...

  7. 造成socket.error: [Errno 99] Cannot assign requested

    socket.error: [Errno 99] Cannot assign requested address 网上你去搜,基本都是说bind的时候,地址已经被用了,都是胡扯.地址被用报的错误应该是 ...

  8. 【extjs6学习笔记】0.1 准备:基础概念(02)

    Ext 类 Ext 是一个全局单例的对象,在 Sencha library 中它封装了所有的类和许多实用的方法.许多常用的函数都定义在 Ext 对象里.它还提供了像其他类中一些频繁使用的方法的快速调用 ...

  9. SQL SEVER数据库重建索引的方法

    一.查询思路 1.想要判断数据库查询缓慢的问题,可以使用如下语句,可以列出查询语句的平均时间,总时间,所用的CPU时间等信息 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  10. sudo的用法

    为了系统安全我们一般不直接使用root用户进行日常维护,sudo是临时提升root权限,有时执行一些命令或者更新没权限的文件时需要使用root,这个时候就需要sudo上场了 普通用户是没有sudo使用 ...