CSU-2173 Use FFT

Description

Bobo computes the product P(x)⋅Q(x)=\(c_0 + c_1x + … + c_{n+m}x^{n + m}\) for two polynomials P(x)=\(a_0 + a_1x + … + a_nx^n\) and Q(x)=\(b_0 + b_1x + … + b_mx^m\). Find $ (c_L + c_{L + 1} + … + c_R) $ modulo ($10^9 $ + 7) for given L and R.

  • 1 ≤ n, m ≤ 5 × \(10^5\)
  • 0 ≤ L ≤ R ≤ n + m
  • 0 ≤ \(a_i, b_i\) ≤ \(10^9\)
  • Both the sum of n and the sum of m do not exceed \(10^6\).

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains four integers n, m, L, R.

The second line contains (n + 1) integers \(a_0, a_1, …, a_n\).

The third line contains (m + 1) integers \(b_0, b_1, …, b_m\).

Output

For each test case, print an integer which denotes the reuslt.

Sample Input

1 1 0 2
1 2
3 4
1 1 1 2
1 2
3 4
2 3 0 5
1 2 999999999
1 2 3 1000000000

Sample Output

21
18
5

题解

这题标题是Use FFT所以当然是用FFT做了(滑稽)

这题其实是个数学题+找规律题,借用一张图片



所以我们对b求前缀和,用a去乘,注意细节就好了

#include<bits/stdc++.h>
#define maxn 500050
#define p 1000000007
using namespace std;
typedef long long ll;
ll a[maxn], b[maxn];
ll pre[maxn * 2];
int main() {
int n, m, l, r;
while (scanf("%d%d%d%d", &n, &m, &l, &r) != EOF) {
for (int i = 1; i <= n + 1; i++) {
scanf("%lld", &a[i]);
}
for (int i = 1; i <= m + 1; i++) {
scanf("%lld", &b[i]);
pre[i] = (pre[i - 1] + b[i]) % p;
}
for (int i = m + 2; i <= r + 1; i++) {
pre[i] = pre[i - 1];
}
ll ans = 0;
for (int i = 1; i <= n + 1; i++) {
ans = (ans + a[i] * (pre[r + 1] - pre[l] + p) % p) % p;
if (l > 0) l--;
if (r >= 0) r--;
}
printf("%lld\n", (ans + p) % p);
}
return 0;
}

CSU-2173 Use FFT的更多相关文章

  1. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  2. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  3. 为什么FFT时域补0后,经FFT变换就是频域进行内插?

    应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...

  4. FFT NNT

    算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...

  5. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

  6. ECF R9(632E) & FFT

    Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...

  7. fft练习

    数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...

  8. FFT时域与频域的关系,以及采样速率与采样点的影响

    首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...

  9. 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT

    前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...

  10. FFT

    void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t; ...

随机推荐

  1. #linux 下Sublime的安装

    1.Download http://www.sublimetext.com/2 Installtion use tar  解压压缩包,这里我将包改了个名字,这样就不用写空格的转义字符了,改成Subli ...

  2. IOS 九宫图解锁(封装)

    NJLockView.h /.m @class NJLockView; @protocol NJLockViewDelegate <NSObject> - (void)lockViewDi ...

  3. openlayers 初步认识(转)

    OpenLayers是一个开源的js框架,用于在您的浏览器中实现地图浏览的效果和基本的zoom,pan等功能.OpenLayers支持的地图来源 包括了WMS,GoogleMap,KaMap,MSVi ...

  4. vuejs计算属性和侦听器

    <div id='root'> 姓:<input v-model='firstName'/> 名:<input v-model='secondName'/> < ...

  5. jQuery Pagination分页插件--刷新

    源码地址:https://github.com/SeaLee02/FunctionModule/blob/master/UploadFiles/WebDemo/FenYE/FenYeDemo.aspx ...

  6. CSVDE

    csvde -f C:\export_OrganizationalUnit.csv -r '(objectClass=organizationalUnit)' -l 'displayName,prox ...

  7. AJAX进行分页

    新建数据集:PagingDataSet.xsd SELECT * from ( select id, areaID, area, father,Row_Number() over (order by ...

  8. 前端小记3——iOS与Android问题

    1.消除transition闪屏 (1)-webkit-transform-style:preserve-3d;  /*设置内嵌的元素在 3D 空间如何呈现:保留 3D*/ (2)-webkit-ba ...

  9. linux apache 不解析php文件显示源码

    首先检查是否安装PHP 没有的话就先安装 如果安装过 在/etc/httpd/conf/httpd.conf文件中 在<IfModule mime_module>里面 AddType ap ...

  10. notify()和notifyAll()主要区别

    notify()和notifyAll()都是Object对象用于通知处在等待该对象的线程的方法. void notify(): 唤醒一个正在等待该对象的线程.void notifyAll(): 唤醒所 ...