CSU-2173 Use FFT

Description

Bobo computes the product P(x)⋅Q(x)=\(c_0 + c_1x + … + c_{n+m}x^{n + m}\) for two polynomials P(x)=\(a_0 + a_1x + … + a_nx^n\) and Q(x)=\(b_0 + b_1x + … + b_mx^m\). Find $ (c_L + c_{L + 1} + … + c_R) $ modulo ($10^9 $ + 7) for given L and R.

  • 1 ≤ n, m ≤ 5 × \(10^5\)
  • 0 ≤ L ≤ R ≤ n + m
  • 0 ≤ \(a_i, b_i\) ≤ \(10^9\)
  • Both the sum of n and the sum of m do not exceed \(10^6\).

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains four integers n, m, L, R.

The second line contains (n + 1) integers \(a_0, a_1, …, a_n\).

The third line contains (m + 1) integers \(b_0, b_1, …, b_m\).

Output

For each test case, print an integer which denotes the reuslt.

Sample Input

1 1 0 2
1 2
3 4
1 1 1 2
1 2
3 4
2 3 0 5
1 2 999999999
1 2 3 1000000000

Sample Output

21
18
5

题解

这题标题是Use FFT所以当然是用FFT做了(滑稽)

这题其实是个数学题+找规律题,借用一张图片



所以我们对b求前缀和,用a去乘,注意细节就好了

#include<bits/stdc++.h>
#define maxn 500050
#define p 1000000007
using namespace std;
typedef long long ll;
ll a[maxn], b[maxn];
ll pre[maxn * 2];
int main() {
int n, m, l, r;
while (scanf("%d%d%d%d", &n, &m, &l, &r) != EOF) {
for (int i = 1; i <= n + 1; i++) {
scanf("%lld", &a[i]);
}
for (int i = 1; i <= m + 1; i++) {
scanf("%lld", &b[i]);
pre[i] = (pre[i - 1] + b[i]) % p;
}
for (int i = m + 2; i <= r + 1; i++) {
pre[i] = pre[i - 1];
}
ll ans = 0;
for (int i = 1; i <= n + 1; i++) {
ans = (ans + a[i] * (pre[r + 1] - pre[l] + p) % p) % p;
if (l > 0) l--;
if (r >= 0) r--;
}
printf("%lld\n", (ans + p) % p);
}
return 0;
}

CSU-2173 Use FFT的更多相关文章

  1. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  2. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  3. 为什么FFT时域补0后,经FFT变换就是频域进行内插?

    应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...

  4. FFT NNT

    算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...

  5. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

  6. ECF R9(632E) & FFT

    Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...

  7. fft练习

    数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...

  8. FFT时域与频域的关系,以及采样速率与采样点的影响

    首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...

  9. 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT

    前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...

  10. FFT

    void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t; ...

随机推荐

  1. WebAPI项目添加定时服务

    开发平台: VS2019 背景: 在开发小程序的API服务的时候,由于access_token的有效期为7200秒,也就是2小时,这就需要后端定时的去更新这个access_token,便于调用小程序的 ...

  2. Linux常用命令-1

    内部命令:属于Shell解释器的一部分(已调入内存) 外部命令:独立于Shell解释器之外的程序文件(在磁盘上) 获得命令帮助 1)内部命令help 查看Bash内部命令的帮助信息 2)命令的“--h ...

  3. 美国L1签证申请的常见问题解析

    美国L1是一种允许在美国和中国都有机构的跨国公司从国外的母公司派遣一定层次的经理或专业技术人员去美国分支机构工作的非移民签证.L1签证分两类:美国L1A是跨国公司经理及主管人员签证,L1B是专门技术人 ...

  4. 本人常用的Phpstorm快捷键

    我设置的是eclipse的按键风格(按键习惯),不是phpstorm的风格 1.添加TODO(这个不是快捷键)://TODO 后面是说明,换行写实现代码 2.选择相同单词做一次性修改:Alt+J+鼠标 ...

  5. STL容器 成员函数 时间复杂度表

    Sequence containers Associative containers   Headers <vector> <deque> <list> <s ...

  6. linux 命令——47 iostat (转)

    Linux系统中的 iostat 是I/O statistics(输入/输出统计)的缩写,iostat工具将对系统的磁盘操作活动进行监视.它的特点是汇报磁盘活动统计情况,同时也会 汇报出CPU使用情况 ...

  7. linux 命令——40 wc (转)

    Linux系统中的wc(Word Count)命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 1.命令格式: wc [选项]文件... 2.命令功能: 统计指定文件中的字节数. ...

  8. 【Orange Pi Lite2】 ——2《在使用之前的配置》(未完)

    [Orange Pi Lite2] --2<在使用之前的配置> 本文只在博客园发布 在开始前你需要准备的材料与软件 filezilla/或者不 声明 : 本教程适合0基础新手,本章将会介绍 ...

  9. 访问mongo数据库报错

    It looks like you are trying to access MongoDB over HTTP on the native driver port. 出错原因: 1.没有安装mong ...

  10. hdu-1556 Color the ball---树状数组+区间修改单点查询

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1556 题目大意: Problem Description N个气球排成一排,从左到右依次编号为1,2 ...