Description

M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

Input

第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
第2行包含N非负整数ai,表示初始标号为i的球有ai个。

Output

应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

Sample Input

2 3 2
3 0

Sample Output

1.667
1.333

HINT

【样例说明】

第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。

第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。

【数据规模与约定】

对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;

对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;

对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;

对于40%的数据,M ≤ 1000, K ≤ 1000;

对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

/*
设f[i][j]为经过i次操作,编号为j的球的期望个数。
转移方程:f[i+1][j%n+1]+=f[i][j]/m;
f[i+1][j]+=f[i][j]*(m-1)/m。
我想的矩阵乘法是设一个n*n的矩阵来表示各个编号的转移关系,但是复杂度不够,一种神奇的思路是设一个1*n的矩阵来表示每个点转移到它以下第几个点的贡献,因为对于每个编号来说,贡献是完全相同的所以可以这样转移。
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 1010
using namespace std;
int n,m,K,a[N];
double ans[N];
struct M{
double v[N];
M(){
memset(v,,sizeof(v));
}
friend M operator*(M a,M b){
M c;
for(int i=;i<n;i++)
for(int k=;k<n;k++)
c.v[i]+=a.v[(i-k+n)%n]*b.v[k];
return c;
}
friend M operator^(M a,int b){
M ans;
ans.v[]=;
for(int i=b;i;i>>=,a=a*a)
if(i&)ans=ans*a;
return ans;
}
}B;
int main(){
scanf("%d%d%d",&n,&m,&K);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
B.v[]=(1.0-1.0/m);B.v[]=1.0/m;
B=B^K;
for(int i=;i<=n;i++)
for(int j=;j<n;j++){
int t=i+j;
t%=n;if(!t)t=n;
ans[t]+=B.v[j]*a[i];
}
for(int i=;i<=n;i++)
printf("%.3lf\n",ans[i]);
return ;
}

弱题(bzoj 2510)的更多相关文章

  1. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  2. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  3. [BZOJ 2510]弱题

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 419  Solved: 226[Submit][Status][Discuss] D ...

  4. 【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 196 Description 有M个球,一开始每个球均有一 ...

  5. 【BZOJ2510】弱题 期望DP+循环矩阵乘法

    [BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...

  6. 「BZOJ2510」弱题

    「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...

  7. bzoj 2510 弱题 矩阵乘

    看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...

  8. bzoj 2510: 弱题 概率期望dp+循环矩阵

    题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...

  9. 【循环矩阵乘优化DP】BZOJ 2510 弱题

    题目大意 有 \(M\) 个球,一开始每个球均有一个初始标号,标号范围为 \(1\) - \(N\) 且为整数,标号为 \(i\) 的球有 \(a_i\) 个,并保证 \(\sum a_i = M\) ...

随机推荐

  1. jpeg解码库使用实例

    jpeg库下载地址: http://www.ijg.org/ 交叉编译三部曲: A ./configure --host=arm-linux-gcc --prefix=/home/flying/jpe ...

  2. SPOJ2713GSS4 - Can you answer these queries IV(线段树)

    题意 Sol 讲过无数次了..很显然,一个$10^12$的数开方不超过$8$次后就会变为$1$ 因此直接暴力更改即可,维护一下这段区间是否被全改为了$1$ 双倍经验:https://www.luogu ...

  3. C/C++程序基础 (九)排序算法简述

    排序算法 算法复杂度 算法简述 插入排序 N2 前方有序,依次将后方无序数据插入前方合适位置. 冒泡排序 N2 前方有序,从后方两两比较,将最小泡冒到前方. 选择排序 N2 前方有序,从后方选择最小的 ...

  4. Mysql--子查询、分页查询、联合查询

    一. 子查询的定义 出现在其他语句中的select语句,称为子查询或者内查询,外部的查询语句称为主查询或者外查询,子查询可以包含普通select可以包含的任何语句. 外部查询:select.inser ...

  5. mysql查询哪个表数据量最大

    use information_schema;select table_name,table_rows from tables where table_schema='cargo_new' order ...

  6. python之斐波纳契数列

    斐波纳契数列 斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,676 ...

  7. JavaScript事件对象与事件的委托

    事件对象 包含事件相关的信息,如鼠标.时间.触发的DOM对象等 js默认将事件对象封装好,并自动的以参数的形式,传递给事件处理函数的第1个参数,如下: document.getElementsByTa ...

  8. JVM 内存分配和回收策略

    对象的内存分配,主要是在java堆上分配(有可能经过JIT编译后被拆为标量类型并间接地在栈上分配),如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配.少数情况下也是直接分配到老年代,分配规则不 ...

  9. TCP/IP网络编程之套接字的多种可选项

    套接字可选项进而I/O缓冲大小 我们进行套接字编程时往往只关注数据通信,而忽略了套接字具有的不同特性.但是,理解这些特性并根据实际需要进行更改也十分重要.之前我们写的程序在创建好套接字后都是未经特别操 ...

  10. 03014_EL技术

    1.EL表达式概述 EL(Express Language)表达式可以嵌入在jsp页面内部,减少jsp脚本的编写,EL出现的目的是要替代jsp页面中脚本的编写. 2.EL从域中取出数据(EL最重要的作 ...