CF961G Partitions(第二类斯特林数)
对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\)
那么分别讨论
如果这个元素自己单独一个集合,那么方案数为\(S(n-1,k-1)\)(这个\(S\)是第二类斯特林树),也就是讨论其它的\(n-1\)个怎么放,每一种方案的贡献都是\(1\),所以这一部分的贡献就是\(S(n-1,k-1)\)
如果这个元素和其它元素一起放在一个集合里,那么剩下\(n-1\)个元素放的方案数为\(S(n-1,k)\),然后考虑每一种方案,\(n\)可以放在这\(k\)个集合中的任意一个,设每个集合的大小为\(a_i\),那么总的贡献就是\(\sum_{i=1}^k(a_i+1)\),因为有\(\sum_{i=1}^k a_i=n-1\),所以总的贡献为\(n+k-1\),于是这一部分的总贡献就是\((n-k+1)S(n-1,k)\)
第二类斯特林数用通项公式代入求就行了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=2e5+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int fac[N],inv[N];
int x,n,ans,k;ll sum;
int S(R int n,R int m){
R int res=0;
fp(i,0,m){
R int t=1ll*inv[i]*inv[m-i]%P*ksm(m-i,n)%P;
(i&1)?res=dec(res,t):res=add(res,t);
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=read();
fp(i,1,n)x=read(),sum+=x;
fac[0]=inv[0]=1;fp(i,1,k)fac[i]=mul(fac[i-1],i);
inv[k]=ksm(fac[k],P-2);fd(i,k-1,1)inv[i]=mul(inv[i+1],i+1);
ans=mul(sum%P,add(S(n-1,k-1),1ll*(n+k-1)*S(n-1,k)%P));
printf("%d\n",ans);
return 0;
}
CF961G Partitions(第二类斯特林数)的更多相关文章
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- 【CF932E】Team Work(第二类斯特林数)
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...
随机推荐
- (转)浅析三层架构与MVC模式的区别
MVC模式介绍: MVC全名是Model ViewController,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用于组织代码用一种业务逻辑和数据 ...
- 深刻理解render 和 redirect_to
深刻理解render 和 redirect_to http://www.blogjava.net/fl1429/archive/2009/03/12/259403.html 由于最近老是在表单提交后出 ...
- IDEA编译less插件LESS CSS Compiler的安装
1.IDEA插件地址:LESS CSS Compiler 百度云盘下载地址 2.安装Node.js,下载 3.打开idea→settings→plugins 安装:“nodejs”插件,并按以下步骤进 ...
- 如何解决GBK的编码的文件中的中文转换成为UTF-8编码的文件而且不乱码
首先我们必须明确一点,为什么正常转换会乱码? 因为我们的数据写入是GBK写入的,然后展示的话是按照文件保存形势展示的,前面保存形势是GBK,一致,所以不乱码,而后面将保存形势变成了UTF-8,但是写入 ...
- mvc 让伪静态变得简单
IIS 部署后访问*.* config 配置: <modules runAllManagedModulesForAllRequests="true"> < ...
- ACM学习历程——POJ1260 Pearls(动态规划)
Description In Pearlania everybody is fond of pearls. One company, called The Royal Pearl, produces ...
- poj3662Telephone Lines——二分+最短路
题目:http://poj.org/problem?id=3662 二分答案找出符合条件的最小长度: 假设了每个长度后,以这个为标准对每条边赋值,0为小于等于,1为大于,然后按这个值来跑最短路,在看看 ...
- [RTOS]--uCOS、FreeRTOS、RTThread、RTX等RTOS的对比之特点
本篇博客就来细数这几个RTOS的特点. 以下内容均来自官方网站或者官方手册Feature的Google翻译的加了我的一些调整,没有任何主观成分. 1. FreeRTOS FreeRTOS是专为 ...
- Mongo可视化工具基本操作
一.可视化工具界面(字段名可以不加引号) 二.查询(query)1.日期如:"F1":ISODate("2017-07-26T16:00:00Z")2.条件(& ...
- Ubuntu Hadoop环境搭建(Hadoop2.6.5+jdk1.8.0_121)
1.JDK的安装 2.配置hosts文件(这个也要拷贝给所有slave机,scp /etc/hosts root@slave1:/etc/hosts) gedit /etc/hosts 添加: 122 ...