【题解】Greatest Common Increasing Subsequence
【题解】Greatest Common Increasing Subsequence
唉,把自己当做DP入门选手来总结这道题吧,我DP实在太差了
首先是设置状态的技巧,设置状态主要就是要补充不漏并且适合转移。
这样的区间对区间有个设置状态的技巧:一维钦定一维区间
具体来说,是这个意思:
- 我们要方便记录状态 ,所以我们记录一维区间的答案
- 我们要可以转移,所以我们钦定一个状态方便转移
- 我们要方案互斥,所以我们钦定一个状态方便转移(方法同上,钦定这个技巧同时满足了两种要求)
接下来是对于方案的记录:
- 方案随着DP转移,到时候\(O(n)\)回答
对于这一道题目我们这样设计
设\(dp(i,j)\)表示考虑了\(a_1 \to a_i\)的串,钦定以\(b_j\)串结尾的最长公共上升子序列的最大值
有转移方程
\]
记录方案跟着\(dp\)记录即可,很简单。
才怪!
很难(对于我这样的菜鸡来说)
记录的关键是记录\(B\)串,注意一下实现的顺序。
//@winlere
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57)ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=505;
int A[maxn],B[maxn],last[maxn][maxn],dp[maxn][maxn],stk[maxn];
int main(){
register int T=qr();
while(T--){
memset(last,-1,sizeof last);
memset(dp,0,sizeof dp);
memset(stk,0,sizeof(stk));
register int n,m,ans=0;
n=qr();
for(register int t=1;t<=n;++t)
A[t]=qr();
m=qr();
for(register int t=1;t<=m;++t)
B[t]=qr();
A[0]=B[0]=1<<31;
for(register int t=0;t<=n;++t)
dp[t][0]=0;
for(register int t=1,fr=0;t<=n;++t){
dp[0][fr=0]=0;
for(register int i=1;i<=m;++i){
dp[t][i]=dp[t-1][i];
if(A[t]==B[i]){
if(dp[t][i]<dp[t-1][fr]+1)
dp[t][i]=dp[t-1][fr]+1,last[t][i]=fr;
//cout<<dp[t][i]<<' '<<t<<' '<<i<<' '<<fr<<' '<<last[t][i]<<endl;
}
if(B[i]<A[t])if(dp[t-1][fr]<dp[t-1][i])fr=i;
}
}
for(register int t=1;t<=m;++t)
if(dp[n][ans]<dp[n][t])
ans=t;
printf("%d\n",dp[n][ans]);
// continue;
if(dp[n][ans]<=0) continue;
int tmp_i=ans;
for(int i=n;i>=1;--i)if(last[i][tmp_i]!=-1)stk[++stk[0]]=A[i],tmp_i=last[i][tmp_i];
for(register int t=stk[0];t>=2;--t)
printf("%d ",stk[t]);
printf("%d \n",stk[1]);
}
return 0;
}
【题解】Greatest Common Increasing Subsequence的更多相关文章
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
- HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...
- HDU1423:Greatest Common Increasing Subsequence(LICS)
Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...
- Greatest Common Increasing Subsequence hdu1423
Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- POJ 2127 Greatest Common Increasing Subsequence
You are given two sequences of integer numbers. Write a program to determine their common increasing ...
- HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)
Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
随机推荐
- 全站之路一路坑(2)——在Apache下部署django博客
上一篇博客:全栈之路一路坑之使用django开发博客 开发完博客之后,很多后续应用需要博客部署之后才可以使用,这篇文章就来尝试一下将开发好的博客部署到服务器上. 开发阶段,一直使用的是virtuale ...
- Beginning Auto Layout Tutorial in iOS 7: Part 2
Auto Layout to the rescue! 接下来就看看如何使用Auto Layout来实现这个效果. 首先移除viewWillLayoutSubviews方法,选择Main.storybo ...
- DailyMasalaCMS升级记录
手头上是一个比较老的工程,Jdk1.7 + Tomcat7.0 + Spring 3.x + Hibernate 3.x + Elasticseach 2.x 最近Elasticsearch升级,ja ...
- docker入门小结(二)
11,网络使用 sudo docker run -d -P training/webapp python app.py sudo docker ps -l 这样将主机一个端口映射到容器中,由于app. ...
- mongodb分片片键的选择(持续更新中)
首先要了解项目的情况,检查使用情况 对集合进行分片时,要选择一个或者两个字段拆分数据,这个键叫做片键 一旦拥有对个分片,在修改片键几乎是不肯能的事情,因此选择合适的片键是非常重要的. 对集合分片之前要 ...
- 一知半见的load与get
http://www.oschina.net/question/5189_3991 我只用get.load不管.
- Codeforces Round #243 (Div. 2)——Sereja and Table
看这个问题之前,能够先看看这个论文<一类算法复合的方法>,说白了就是分类讨论,可是这个思想非常重要 题目链接 题意: 首先给出联通块的定义:对于相邻(上下和左右)的同样的数字视为一个联通块 ...
- 代理server的概要知识
技术支持请留言:http://www.lcpower.cn 一.什么是代理server? 代理server英文全称是Proxy Server.其功能就是代理网络用户去取得网络信息.形象的说:它是网络信 ...
- Hadoop2.2.0-64位编译
本作品由Man_华创作,采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可.基于http://www.cnblogs.com/manhua/上的作品创作. 实验环境:Ubunt ...
- Msfvenom 学习笔记与总结
平台:Android,可用Payload: android/meterpreter/reverse_http Run a meterpreter server on Android. Tunnel c ...