题目链接  BZOJ3751

这道题的关键就是选取取模的质数。

我选了4个大概几万的质数,这样刚好不会T

然后统计答案的时候如果对于当前质数,产生了一个解。

那么对于那些对这个质数取模结果为这个数的数也要统计进答案。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 2e4 + 10;
const int M = 1e6 + 10; const int p[6] = {0, 26833, 15259, 19249, 26681}; int n, m;
char ch[N];
int a[10][N], fg;
int s[M], len, ans; int main(){ scanf("%d%d", &n, &m);
rep(i, 0, n){
scanf("%s", ch + 1);
len = strlen(ch + 1);
fg = 1;
if (ch[1] == '-') fg = -1, ch[1] = '0';
rep(j, 1, 4){
rep(k, 1, len) a[j][i] = (a[j][i] * 10 + ch[k] - 48) % p[j];
a[j][i] = (a[j][i] * fg + p[j]) % p[j];
}
} rep(i, 1, 4){
rep(j, 0, p[i] - 1){
int x = a[i][n];
dec(k, n - 1, 0) x = (x * j + a[i][k]) % p[i];
if (!x) for (int k = j; k <= m; k += p[i]) ++s[k];
}
} ans = 0;
rep(i, 1, m) if (s[i] == 4) ++ans;
printf("%d\n", ans);
rep(i, 1, m) if (s[i] == 4) printf("%d\n", i);
return 0;
}

  

BZOJ3751 NOIP2014 解方程(Hash)的更多相关文章

  1. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  2. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  3. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  4. 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程

    在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...

  5. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  6. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  7. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  8. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  9. bzoj3751 / P2312 解方程

    P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...

随机推荐

  1. 【php】对象的比较

    对象的比较 相等的比较 ==当使用比较运算符(==)比较两个对象变量时,比较的原则是:如果两个对象的属性和属性值 都相等,而且两个对象是同一个类的实例,那么这两个对象变量相等. 全等的比较 ===如果 ...

  2. jmeter接口测试 ——学习笔记

    JMETER常用操作 1.jmeter做http脚本 Http请求页面内容介绍 添加cookie 线程组-添加-配置元件--HTTP Cookie管理器 添加权限验证 不能使用普通用户修改学生金币,接 ...

  3. STM32HAL学习博客

    https://www.cnblogs.com/wt88/category/1297945.html

  4. bs4--官文--搜索文档树

    搜索文档树 Beautiful Soup定义了很多搜索方法,这里着重介绍2个: find() 和 find_all() .其它方法的参数和用法类似,请读者举一反三. 再以“爱丽丝”文档作为例子: ht ...

  5. PHP中文网 学习阶段规划

    1.第一阶段: 前端基础 前端基础课程大纲 教学内容 教学重点 1.HTML5 HTML简介.HTML标签详解.字符编码的奥秘.Html5新特性与常用标签 2.CSS3 CSS简介.CSS的引入方式. ...

  6. kruskal - 倍增 - 并查集 - Luogu 1967 货车运输

    P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...

  7. 融合RocksDB, Pregel, Foxx & Satellite Collections 怎样使数据库性能提升35%?

    经过数月的研发测评,开源多模型数据库ArangoDB 终于发布了其 3.2 正式版,该版本消除了两个重大的障碍,添加了一个期待已久的功能,还集成了一个有趣的功能.此外,官方团队表示新版本将 Arang ...

  8. TensorFlow笔记——

    主要依赖包 protocal buffer 处理结构化数据的工具:序列化(结构化数据->数据流) + 还原(数据流->结构化数据) protocol buffer与XML和JSON的区别: ...

  9. The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    A Live Love DreamGrid is playing the music game Live Love. He has just finished a song consisting of ...

  10. springMVC 引入静态资源Js的方式

    前两天项目出现了Js无法引入的情况,本篇博客先总结分析+批判自己犯的低级错,再说说几种访问静态资源的方式! 首先,由于在web.xml里面的servlet拦截匹配为<url-pattern> ...