Paratroopers

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8954   Accepted: 2702

Description

It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.

In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.

Output

For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.

Sample Input

1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4

Sample Output

16.0000

二分图的最小点权覆盖。

code

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std; const int N = ;
const double INF = 1000000000.0;
const double eps = 1e-;
struct Edge{
int to,nxt;double c;
Edge() {}
Edge(int x,double y,int z) {to = x,c = y,nxt = z;}
}e[];
int q[],L,R,S,T,tot = ;
int dis[N],cur[N],head[N]; void add_edge(int u,int v,double c) {
e[++tot] = Edge(v,c,head[u]);head[u] = tot;
e[++tot] = Edge(u,,head[v]);head[v] = tot;
}
bool bfs() {
for (int i=; i<=T; ++i) cur[i] = head[i],dis[i] = -;
L = ,R = ;
q[++R] = S;dis[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == - && e[i].c > eps) {
dis[v] = dis[u]+;q[++R] = v;
if (v==T) return true;
}
}
}
return false;
}
double dfs(int u,double flow) {
if (u==T) return flow;
double used = ;
for (int &i=cur[u]; i; i=e[i].nxt) {
int v = e[i].to;
if (dis[v] == dis[u] + && e[i].c > eps) {
double tmp = dfs(v,min(flow-used,e[i].c));
if (tmp > eps) {
e[i].c -= tmp;e[i^].c += tmp;
used += tmp;
if (used == flow) break;
}
}
}
if (used != flow) dis[u] = -;
return used;
}
double dinic() {
double ret = 0.0;
while (bfs()) ret += dfs(S,INF);
return ret;
}
void Clear() {
tot = ;
memset(head,,sizeof(head));
}
int main() {
int Case,n,m,E,u,v;double x;
scanf("%d",&Case);
while (Case--) { //-不要设T
Clear();
scanf("%d%d%d",&n,&m,&E);
S = n+m+;T = n+m+;
for (int i=; i<=n; ++i) {
scanf("%lf",&x);
add_edge(S,i,log(x));
}
for (int i=; i<=m; ++i) {
scanf("%lf",&x);
add_edge(i+n,T,log(x));
}
for (int i=; i<=E; ++i) {
scanf("%d%d",&u,&v);
add_edge(u,v+n,INF);
}
double ans = dinic();
printf("%.4lf\n",exp(ans));
}
return ;
}

poj 3308 Paratroopers(二分图最小点权覆盖)的更多相关文章

  1. POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)

    http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...

  2. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  3. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  4. POJ 2125 Destroying The Graph 二分图 最小点权覆盖

    POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...

  5. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  6. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

  7. POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割

    思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...

  8. 图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph

    Destroying The Graph   Description Alice and Bob play the following game. First, Alice draws some di ...

  9. POJ 3308 Paratroopers(最小割EK)

    题目链接 题意 : 有一个n*m的矩阵,L个伞兵可能落在某些点上,这些点的坐标已知,需要在某些位置安上一些枪,然后每个枪可以将一行或者一列的伞兵击毙.把这种枪安装到不同行的行首.或者不同列的列首,费用 ...

随机推荐

  1. jQuery事件绑定函数:on()与bind()的差别

    jQuery从1.7+版本开始,提供了on()和off()进行事件处理函数的绑定和取消.on()和bind()这两个方法有相同的地方也有不同的地方. bind(type,[data],fn); on( ...

  2. iQuery stop()

    jQuery stop() 方法 jQuery stop() 方法用于停止动画或效果,在它们完成之前. stop() 方法适用于所有 jQuery 效果函数,包括滑动.淡入淡出和自定义动画. 语法 $ ...

  3. C#添加删除防火墙例外(程序、端口)

    一. 添加 COM 引用 在引用里,选择 COM 页, 找到 NetFwTypeLib , 确定即可 二. 添加允许通过防火墙的例外程序 using System; using System.Coll ...

  4. System Center Configuration Manager 2016 域准备篇(Part4)

    步骤4.创建系统管理容器 注意:在Active Directory域控制器服务器(AD01)上以本地管理员身份执行以下操作 有关您为何这样做的详细信息,请参阅https://docs.microsof ...

  5. NopCommerce 3.80框架研究(二) MVC 表示层与数据验证

    表示层框架结构 /Views/Shared/_Root.Head.cshtml /Views/Shared/_Root.cshtml /Views/Shared/_ColumnsOne.cshtml ...

  6. 关于ffmpeg(libav)解码视频最后丢帧的问题

    其实最初不是为了解决这个问题而来的,是Peter兄给我的提示解决另一个问题却让我误打误撞解决了另外一个问题之后也把这个隐藏了很久的bug找到(之前总是有一些特别短的视频产生不知所措还以为是视频素材本身 ...

  7. World Wind Java开发之六——解析shape文件(转)

    http://blog.csdn.net/giser_whu/article/details/41647117 最近一直忙于导师项目的事情了,几天没更新了,昨天和今天研究了下WWJ解析shp文件的源代 ...

  8. python_57_高阶函数

    变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数. def add(a,b,f): return f(a)+f(b) res=add(-3,- ...

  9. ASP.NET各种技巧

    1.动态添加文件框 前台页面关键部分: <script type="text/javascript"> //添加一个选项 function AddFileCtrol() ...

  10. 国产中标麒麟Linux部署dotnet core 环境并运行项目 (三) 部署运行WEB API项目

    部署dotnet Core Web API 上一步的文章,是我们公司最核心的一个ORM组件,在中标麒麟系统完成了一个插入数据的任务,这一步是将正式的从dot net framework 迁移到 dot ...