ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)
Description
Input
Output
Sample Input
Sample Output
题目大意就是给定n个点的坐标和它x和y方向的分速度,要求在任意时刻两两点之间距离最大值中的最小值。
根据距离公式可以推断出对于某两个点在t逐渐增大的过程中距离服从二次函数。
于是就是对于n个二次抛物线求任意时刻最高点合成的图像。
可以证明(反证)合成的图像也是由两个单调性相反的图像构成(类似于抛物线)。
于是可以采用模拟退火的退化(类似爬山算法)来查找最值。
从minT从0时刻出发,首先设定步长dt = 1e8。然后对于minT-dt和minT+dt讨论,如果使最大值变小,自然更新minT,然后按比例k衰减dt。
直到dt满足精度要求。
进过测试比例k=0.9是可以满足的,跑了530MS;k = 0.95略慢些,跑了1.3S。
网上也有好多使用的是三分法。
这里贴出退火的代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define LL long long
#define eps 1e-5 using namespace std; typedef pair<double, double> pdd; int x[], y[], vx[], vy[], n;
double minT, minDis; double pow2(double k)
{
return k*k;
} double calDis(double t)
{
double dis2 = ;
for (int i = ; i < n; ++i)
{
for (int j = i+; j < n; ++j)
{
if (i == j)
continue;
dis2 = max(dis2,
pow2(x[i]+vx[i]*t-x[j]-vx[j]*t) + pow2(y[i]+vy[i]*t-y[j]-vy[j]*t));
}
}
return sqrt(dis2);
} void qt()
{
double dt = 1e8, t, dis, k = 0.9, v;
minT = ;
minDis = calDis(minT); while (dt > eps)
{
dis = calDis(minT+dt);
t = minT + dt;
if (minT-dt >= )
{
v = calDis(minT-dt);
if (v < dis)
{
dis = v;
t = minT - dt;
}
}
if (dis < minDis)
{
minDis = dis;
minT = t;
}
dt *= k;
}
} void Work()
{
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d%d%d", &x[i], &y[i], &vx[i], &vy[i]);
qt();
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d: ", times);
Work();
printf("%.2lf %.2lf\n", minT, minDis);
}
return ;
}
ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)的更多相关文章
- ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)
Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal ...
- HDU-4717 The Moving Points(凸函数求极值)
The Moving Points Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)
---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...
- 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始
以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告
- ACM学习历程—HDU 5512 Pagodas(数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...
- ACM学习历程—HDU5521 Meeting(图论)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...
- ACM学习历程—HDU2476 String painter(动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=2476 题目大意是给定一个起始串和一个目标串,然后每次可以将某一段区间染成一种字符,问从起始串到目标串最少需要染多 ...
- ACM学习历程—HDU5700 区间交(树状数组 && 前缀和 && 排序)
http://acm.hdu.edu.cn/showproblem.php?pid=5700 这是这次百度之星初赛2B的第五题.省赛回来看了一下,有这样一个思路:对于所有的区间排序,按左值排序. 然后 ...
- ACM学习历程—HDU5701 中位数计数(中位数 && 计数排序)
http://acm.hdu.edu.cn/showproblem.php?pid=5701 这是这次百度之星初赛2B的第六题.之前白山云做过类似的题,省赛完回来,我看了一下大概就有这样的思路:首先枚 ...
随机推荐
- URL Handle in Swift (一) -- URL 分解
更新时间: 2018-6-6 在程序开发过程之中, 我们总是希望模块化处理某一类相似的事情. 在 ezbuy 开发中, 我接触到了对于 URL 处理的优秀的代码, 学习.改进.记录下来.希望对你有所帮 ...
- linux 跟踪工具
strace工具,进程诊断.排错.跟踪系统调用和信号量 每行输出都是一个系统调用,包括函数和返回值. strace是Linux环境下的一款程序调试工具,用来监察一个应用程序所使用的系统调用及它所接收的 ...
- 【WPF学习笔记】之 System.Exception 对象名 'XXXX' 无效。
我在运行vs时候发现项目报错,如下图: 报Exception错误,对象名“XXXXXX”无效. 经过调查得知,因为连接数据库的库名写错了,如下: 对应正确数据库的库名: 把库名改正确,问题就解决了.
- redis问题接囧办法及经验
转自:https://my.oschina.net/freegeek/blog/324410 1.redis持久化,来自官方说明 如何选择使用哪种持久化方式? 一般来说, 如果想达到足以媲美 Post ...
- eclipse中三大利器
eclipse中两大利器: 首先说下用eclipse开发工具.进行java代码,开发的时候,我们开发完成以后.需要测试.大部分我们用Junit测试工具.可是内部的代码覆盖率.和结构我们看的不是那么详细 ...
- CI去掉 URL 中的 index.php
首先,你要清楚自己的 Web 服务器是 Apache,支持 mod_rewrite 查找httpd.conf中是否开启了mod_rewrite.so 然后,在 CI 根目录下新建立一个配置文件,命名为 ...
- 基于zookeeper或redis实现分布式锁
前言 在分布式系统中,分布式锁是为了解决多实例之间的同步问题.例如master选举,能够获取分布式锁的就是master,获取失败的就是slave.又或者能够获取锁的实例能够完成特定的操作. 目前比较常 ...
- PHP购物车模块的实现(php/ajax/session)
购物车网页代码 1.登录界面login.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...
- 原型模式 private static Map<String,Prototype> map = new HashMap<String,Prototype>();
public class PrototypeManager { /** * 用来记录原型的编号和原型实例的对应关系 */ private static Map<String,Prototype& ...
- 九度OJ 1048:判断三角形类型 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6794 解决:3361 题目描述: 给定三角形的三条边,a,b,c.判断该三角形类型. 输入: 测试数据有多组,每组输入三角形的三条边. 输 ...