Description

There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.      
              

Input

The rst line has a number T (T <= 10) , indicating the number of test cases.        For each test case, first line has a single number N (N <= 300), which is the number of points.        For next N lines, each come with four integers X i, Y i, VX i and VY i (-10 6 <= X i, Y i <= 10 6, -10 2 <= VX i , VY i <= 10 2), (X i, Y i) is the position of the i th point, and (VX i , VY i) is its speed with direction. That is to say, after 1 second, this point will move to (X i + VX i , Y i + VY i).      
              

Output

For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.      
              

Sample Input

2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0

Sample Output

Case #1: 1.00 0.00
Case #2: 1.00 1.00

题目大意就是给定n个点的坐标和它x和y方向的分速度,要求在任意时刻两两点之间距离最大值中的最小值。

根据距离公式可以推断出对于某两个点在t逐渐增大的过程中距离服从二次函数。

于是就是对于n个二次抛物线求任意时刻最高点合成的图像。

可以证明(反证)合成的图像也是由两个单调性相反的图像构成(类似于抛物线)。

于是可以采用模拟退火的退化(类似爬山算法)来查找最值。

从minT从0时刻出发,首先设定步长dt = 1e8。然后对于minT-dt和minT+dt讨论,如果使最大值变小,自然更新minT,然后按比例k衰减dt。

直到dt满足精度要求。

进过测试比例k=0.9是可以满足的,跑了530MS;k = 0.95略慢些,跑了1.3S。

网上也有好多使用的是三分法。

这里贴出退火的代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define LL long long
#define eps 1e-5 using namespace std; typedef pair<double, double> pdd; int x[], y[], vx[], vy[], n;
double minT, minDis; double pow2(double k)
{
return k*k;
} double calDis(double t)
{
double dis2 = ;
for (int i = ; i < n; ++i)
{
for (int j = i+; j < n; ++j)
{
if (i == j)
continue;
dis2 = max(dis2,
pow2(x[i]+vx[i]*t-x[j]-vx[j]*t) + pow2(y[i]+vy[i]*t-y[j]-vy[j]*t));
}
}
return sqrt(dis2);
} void qt()
{
double dt = 1e8, t, dis, k = 0.9, v;
minT = ;
minDis = calDis(minT); while (dt > eps)
{
dis = calDis(minT+dt);
t = minT + dt;
if (minT-dt >= )
{
v = calDis(minT-dt);
if (v < dis)
{
dis = v;
t = minT - dt;
}
}
if (dis < minDis)
{
minDis = dis;
minT = t;
}
dt *= k;
}
} void Work()
{
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d%d%d", &x[i], &y[i], &vx[i], &vy[i]);
qt();
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d: ", times);
Work();
printf("%.2lf %.2lf\n", minT, minDis);
}
return ;
}

ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)的更多相关文章

  1. ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)

    Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal ...

  2. HDU-4717 The Moving Points(凸函数求极值)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  4. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  5. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  6. ACM学习历程—HDU5521 Meeting(图论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...

  7. ACM学习历程—HDU2476 String painter(动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=2476 题目大意是给定一个起始串和一个目标串,然后每次可以将某一段区间染成一种字符,问从起始串到目标串最少需要染多 ...

  8. ACM学习历程—HDU5700 区间交(树状数组 && 前缀和 && 排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=5700 这是这次百度之星初赛2B的第五题.省赛回来看了一下,有这样一个思路:对于所有的区间排序,按左值排序. 然后 ...

  9. ACM学习历程—HDU5701 中位数计数(中位数 && 计数排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=5701 这是这次百度之星初赛2B的第六题.之前白山云做过类似的题,省赛完回来,我看了一下大概就有这样的思路:首先枚 ...

随机推荐

  1. *Android 多线程下载 仿下载助手

    今天带来一个多线程下载的 样例.先看一下效果.点击 下载 開始下载,同一时候显示下载进度.完成下载,变成程 安装,点击安装 提示 安装应用. 界面效果 线程池 ThreadPoolExecutor , ...

  2. Spark源码分析之四:Stage提交

    各位看官,上一篇<Spark源码分析之Stage划分>详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交. Stage提交阶段的主要目的就一个,就是将每个S ...

  3. Ubuntu 14.04lts安装vncserver

    之前有在centos上安装过非常多次vncserver,也写过一个centos 7上的安装文档.近来常识了好几次在ubuntu上安装都没有成功,这次最终搞定了.ubuntu自带的桌面是unity.这个 ...

  4. erlang程序优化点的总结

    注意,这里只是给出一个总结,具体性能需要根据实际环境和需要来确定 霸爷指出,新的erlang虚拟机有很多调优启动参数,今后现在这个方面深挖一下. 1. 进程标志设置: 消息和binary内存:erla ...

  5. markdownPad2 绿色破解版安装

    markdownpad2,默认为markdown传统风格,不能编辑分行的代码段,可以在设置里改为Github 风格,但需要付费激活,以下是绿色安装包,附激活方法 下载地址 https://pan.ba ...

  6. implode 函数 把数组拼接成字符串

    $array( '0'=>1, '1'=>5, '2'=>5 ); $str=imploade(',',$array); echo str;//输出1,5,3

  7. Tomcat学习笔记【1】--- WEB服务器、JavaEE、Tomcat背景、Tomcat版本

    本文主要讲学习Tomcat需要知道的基础知识. 一 Web服务器 1.1 简介 Web服务器可以解析HTTP协议.当Web服务器接收到一个HTTP请求,会返回一个HTTP响应,例如送回一个HTML页面 ...

  8. 你不得不知的几款常用的在线API管理工具

    在项目开发过程中,总会涉及到接口文档的设计编写,之前使用的都是ms office工具,不够漂亮也不直观,变更频繁的话维护成本也更高,及时性也是大问题.基于这个背景,下面介绍几个常用的API管理工具,方 ...

  9. Laravel的初始化安装

    Laravel的初始化安装 composer 安装 composer中国镜像laravel文档 curl -sS https://getcomposer.org/installer | php # 修 ...

  10. HTML5实现中国象棋游戏

    在线演示 本地下载