根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值。

发现\(n\)很小,考虑状压\(DP\)。设\(f_{S,T}\)为左部图匹配情况为\(S\),右部图匹配情况为\(T\)的期望,可以得到转移为:

\[
f_{S,T}=\sum_{x \subseteqq S \land y \subseteqq T }f_{S \oplus x,T \oplus y} \times p_e

\]

其中\(x,y\)为边\(e\)的在两个部图的两个端点,\(p_e\)为这条边的出现概率,转移的含义为加上\(e\)这条边后\(x\)和\(y\)实现了匹配。

发现直接这样转移会算重,所以要事先固定一种转移顺序,可以是每次在\(S\)中去除最高位来转移,也就是从低位向高位转移,这样就保证不会算重了。

然后考虑如何解决每条边的出现概率,第一组边不用特殊考虑,概率为\(\frac{1}{2}\)。考虑是否可以把第二组和第三组边也转化为第一种的形式。可以先将第二组和第三组边的两条边都以概率为\(\frac{1}{2}\)加入,对于第二组边,这时两条边同时出现的概率为\(\frac{1}{4}\),不符合题目\(\frac{1}{2}\)的要求,因此再加入同时选这两条边的情况,概率为\(\frac{1}{4}\),对于第三组边,再加入同时选这两条边的情况,概率为\(-\frac{1}{4}\)。根据期望的线性性,发现这样处理是正确的,并且恰好符合了题目的要求。

第二组和第三组边中,若两条边有交集,即两条边为一个点连向另外两个点,此时是不用加上同时选这两条边的情况的,因为题目所求为完美匹配,一个点匹配两个点的情况是不存在的。

处理完边后,记忆化搜索来实现状压\(DP\)即可。

\(code:\)

#include<bits/stdc++.h>
#define maxs 70010
#define p 1000000007
#define inv2 500000004
#define inv4 250000002
#define sta(x) (1<<(x-1))
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,cnt;
map<int,ll> f[maxs];
struct node
{
ll s,t,v;
}e[maxs];
ll dp(int S,int T)
{
if(!S) return 1;
if(f[S].count(T)) return f[S][T];
for(int i=1;i<=cnt;++i)
{
ll s=e[i].s,t=e[i].t,v=e[i].v;
if((S|s)!=S||(T|t)!=T||S>=(s<<1)) continue;
f[S][T]=(f[S][T]+dp(S^s,T^t)*v%p)%p;
}
return f[S][T];
}
int main()
{
read(n),read(m);
for(int i=1;i<=m;++i)
{
int opt,x,y;
read(opt),read(x),read(y),e[++cnt]=(node){sta(x),sta(y),inv2};
if(opt)
{
read(x),read(y);
if(!((sta(x)&e[cnt].s)||(sta(y)&e[cnt].t)))
{
cnt++;
if(opt==1) e[cnt]=(node){sta(x)|e[cnt-1].s,sta(y)|e[cnt-1].t,inv4};
else e[cnt]=(node){sta(x)|e[cnt-1].s,sta(y)|e[cnt-1].t,p-inv4};
}
e[++cnt]=(node){sta(x),sta(y),inv2};
}
}
printf("%lld",dp((1<<n)-1,(1<<n)-1)*(1<<n)%p);
return 0;
}

题解 洛谷 P4547 【[THUWC2017]随机二分图】的更多相关文章

  1. P4547 [THUWC2017]随机二分图(状压,期望DP)

    期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...

  2. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  3. [LOJ2290] [THUWC2017] 随机二分图

    题目链接 LOJ:https://loj.ac/problem/2290 洛谷:https://www.luogu.org/problemnew/show/P4547 Solution 首先考虑只有第 ...

  4. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  5. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  6. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  7. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  8. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  9. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

随机推荐

  1. Spring:一、基本模块思维导图

  2. springboot自动装配原理

    最近开始学习spring源码,看各种文章的时候看到了springboot自动装配实现原理.用自己的话简单概括下. 首先打开一个基本的springboot项目,点进去@SpringBootApplica ...

  3. Oracle 导入数据库dmp文件

    场景:windows2008 R2系统 ,往新安装的oracle11g数据库导入同事给的dmp文件到指定的新建的用户. 1.创建表空间 在导入dmp文件之前,先打开查看dmp文件的表空间名称(tabl ...

  4. github知名企业开源项目索引

    亚马逊:https://github.com/amzn 饿了么 https://github.com/ElemeFEhttp://lrd.ele.me/腾讯 https://github.com/Te ...

  5. xxl-job搭建、部署、SpringBoot集成xxl-job

    一.搭建xxl-job 1.下载xxl-job代码 码云地址:https://gitee.com/xuxueli0323/xxl-job gitHub地址:https://github.com/xux ...

  6. vim/vm命令后提示错误:Found a swap file by the name ".dockerfile.swp"

    今天在使用docker时,使用vim命令操作dockerfile文件,提示如下错误: 错误原因,是由于上一次在操作该文件时,异常退出,然后系统生成了一个dockerfile.swp文件,该文件是个隐藏 ...

  7. Python实用笔记 (13)函数式编程——返回函数

    函数作为返回值 我们来实现一个可变参数的求和.通常情况下,求和的函数是这样定义的: def calc_sum(*args): ax = 0 for n in args: ax = ax + n ret ...

  8. Mariadb之日志相关配置

    前面我们聊到了mariadb的事务,以及事务隔离级别,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13198186.html:今天我们来聊一聊mariadb的 ...

  9. 逻辑式编程语言极简实现(使用C#) - 2. 一道逻辑题:谁是凶手

    本系列前面的文章: 逻辑式编程语言极简实现(使用C#) - 1. 逻辑式编程语言介绍 这是一道Prolog经典的练习题,中文翻译版来自阮一峰的文章<Prolog 语言入门教程>. 问题 B ...

  10. Syntax error, insert "}" to complete MethodBody

    jsp中代码在Eclipse中打开正常,导入项目导入MyEclipse后显示如下异常: Syntax error, insert "}" to complete MethodBod ...