pandas之cut
cut( )用来把一组数据分割成离散的区间。
cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
# x:被切分的数据,必须是一维的
# bins:①int型整数:将x按照数值大小平均分成分成bins份,x的范围在最左侧和最右侧分别扩展0.1%以包括最大值和最小值
#②标量序列:自定义分组的每个区间,此时严格按照给定的区间分割,x最左和最右不扩展
#③pandas.IntervalIndex
# right:布尔值,默认为True,表示分割后包含区间右侧值不包含左侧值,False表示分割后包含左侧值不包括右侧值
# labels:分组后bins的标签,默认为None显示分割后属于的区间
# retbins:返回结果中是否包括bins,一般bins参数使用整数时
# precision:保留的小数点位数,默认为3
# include_lowest:如果自定义标量序列分组,第一个区间是否包含左侧最小值
# duplicates:是否允许区间重复
bins设置为整数,将一维数组平均分为5份
arr = np.array([1,77,10,89,36,12,58,62,5,40,32,18,20,25,30,100])
c = pd.cut(arr,5,precision=1)
print(c)
# [(0.9, 20.8], (60.4, 80.2], (0.9, 20.8], (80.2, 100.0], (20.8, 40.6], ..., (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], (80.2, 100.0]]
# Length: 16
# Categories (5, interval[float64]): [(0.9, 20.8] < (20.8, 40.6] < (40.6, 60.4] < (60.4, 80.2] < (80.2, 100.0]]
系统自动根据数组中数值的大小将原数据平均分为5分,每个区间间隔为19.8。整个区间的起点为(1,100],由于右侧包含了100因此最大区间的最大值无需扩展,而由于不包括1,因此最小区间的最小值需向左扩展0.1% * 100 = 0.1,即1-0.1 = 0.9。
设置retbins=True,会将分割区间以数组形式显示出来,这个参数一般在bins设置为整数时使用,因为其他bins两种方式都是自定义了这个区间。
arr = np.array([1,5,10,40,36,12,58,62,77,89,100,18,20,25,30,32])
c = pd.cut(arr,5,precision=1,retbins = True)
print(c)
# ([(0.9, 20.8], (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], ..., (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], (20.8, 40.6]]
# Length: 16
# Categories (5, interval[float64]): [(0.9, 20.8] < (20.8, 40.6] < (40.6, 60.4] < (60.4, 80.2] < (80.2, 100.0]], \
# array([ 0.901, 20.8 , 40.6 , 60.4 , 80.2 , 100. ]))
bins自定义分组序列,并指定lables
c = pd.cut(arr,bins = [1,5,18,35,50,100],labels = ['幼儿','少年','青年','中年','老年'],precision=1)
print(c)
# [NaN, 老年, 少年, 老年, 中年, ..., 少年, 青年, 青年, 青年, 老年]
# Length: 16
# Categories (5, object): [幼儿 < 少年 < 青年 < 中年 < 老年]
上述示例的意思是,将原数组按照1-5、5-18、18-35、35-50、50-100(左开右闭)的区间进行划分,划分后分别对应幼儿、少年、青年、中年、老年。
但是由于默认为左开区间所以无法将最小值划到一个给定的区间(如果设置right=False则最大值无对应区间),因此原数组中的第一个数1返回的是NaN,可以设置参数include_lowest=True,则可将最小是包含进去。
c = pd.cut(arr,bins = [1,5,18,35,50,100],labels = ['幼儿','少年','青年','中年','老年'],precision=1,include_lowest=True)
print(c)
# [幼儿, 老年, 少年, 老年, 中年, ..., 少年, 青年, 青年, 青年, 老年]
# Length: 16
# Categories (5, object): [幼儿 < 少年 < 青年 < 中年 < 老年]
上述例子的返回结果包含三项,第一项是每个数属于哪个区间,第二个是原数组长度,第三个是Category对象
如果只想显示第一项、即数组中的每个值属于哪个区间,可设置为labels = False
c= pd.cut(arr,bins = [1,5,18,35,50,100],labels=False,include_lowest=True)
print(c)
# [0 0 1 3 3 1 4 4 4 4 4 1 2 2 2 2]
pandas之cut的更多相关文章
- pandas之cut(),qcut()
功能:将数据进行离散化 可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂 1.pd.cut函数有7个参 ...
- 数据处理:12个使得效率倍增的pandas技巧
数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习P ...
- pandas的离散化,面元划分
pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) ...
- pandas 初识(三)
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...
- 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...
- Pandas进阶之提升运行效率
前言 如果你现在正在学习数据分析,或者正在从事数据分析行业,肯定会处理一些大数据集.pandas就是这些大数据集的一个很好的处理工具.那么pandas到底是什么呢?官方文档上说: " 快速, ...
- pandas优化
目录 前言 使用Datetime数据节省时间 pandas数据的循环操作 使用itertuples() 和iterrows() 循环 Pandas的 .apply()方法 矢量化操作:使用.isin( ...
- 《利用Python进行数据分析》第7章学习笔记
数据规整化:清理.转换.合并.重塑 合并数据集 pandas.merge pandas.concat combine_first 数据库风格的DataFrame合并 索引上的合并 join()实例方法 ...
- Python之数据规整化:清理、转换、合并、重塑
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象 ...
随机推荐
- caffe的python接口学习(4)mnist实例手写数字识别
以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...
- 【未完待续】MVC 之HTML辅助方法
顾名思义,HTML辅助方法(HTML Helper)就是用来辅助产生HTML之用, 在开发View的时候一定会面对许多HTML标签,处理这些HTML的工作非常繁琐,为了降低View的复杂度,可以使用H ...
- 联通BSS-ESS-CBSS系统安装相关
前言 1. 版本信息 版本 日期 记录 1.0 2016.08.15 初始版本 2. 作者信息 信息 内容 部门 夷陵区分公司 作者 Z.J.T 邮箱 coralfoxzjt@163.com 必须操作 ...
- 放弃for循环吧
前言 for(var i=0;i<array.length;i++){}这个可以是初学者必学的知识,也是JS中必不可少的功能,但如果对性能要求较高的小伙伴有了解过就会发现,for循环性能不高且代 ...
- Python3笔记001 - 1.1 python概述
第1章 认识python python语言特点 跨平台 开源的 解释型 面向对象 python语言的特点是:以对象为核心组织代码,支持多种编程范式,采用动态类型,自动进行内存回收,并能调用C语言库进行 ...
- 作为架构师必须知道的Netty原理和使用
本文首发于微信公众号[猿灯塔],转载引用请说明出处 今天呢!灯塔君跟大家讲: Netty应用 一.Netty简介 1.Netty下载 官网:https://netty.io/downloads.htm ...
- 每日一题 - 剑指 Offer 40. 最小的k个数
题目信息 时间: 2019-06-30 题目链接:Leetcode tag: 快排 难易程度:中等 题目描述: 输入整数数组 arr ,找出其中最小的 k 个数.例如,输入4.5.1.6.2.7.3. ...
- 在页面制作的时候常用的html页面滚动加载,可视区域判断方法
演示图 考虑2个情况一种情况初始状态下 滚动到在中间区域的时候,这时上半部分看不见的元素就不给字体添加红色一种情况是,从头向下看的. 代码 .ss li { margin: 40px; } <d ...
- UVA11300 Spreading the Wealth 题解
题目 A Communist regime is trying to redistribute wealth in a village. They have have decided to sit e ...
- 一小时完成后台开发:DjangoRestFramework开发实践
DjangoRestFramework开发实践 在这之前我写过一篇关于Django与Drf快速开发实践的博客,Django快速开发实践:Drf框架和xadmin配置指北,粗略说了一下Drf配置和基本使 ...