cut( )用来把一组数据分割成离散的区间。

cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
# x:被切分的数据,必须是一维的
# bins:①int型整数:将x按照数值大小平均分成分成bins份,x的范围在最左侧和最右侧分别扩展0.1%以包括最大值和最小值
     #②标量序列:自定义分组的每个区间,此时严格按照给定的区间分割,x最左和最右不扩展
     #③pandas.IntervalIndex
# right:布尔值,默认为True,表示分割后包含区间右侧值不包含左侧值,False表示分割后包含左侧值不包括右侧值
# labels:分组后bins的标签,默认为None显示分割后属于的区间
# retbins:返回结果中是否包括bins,一般bins参数使用整数时
# precision:保留的小数点位数,默认为3
# include_lowest:如果自定义标量序列分组,第一个区间是否包含左侧最小值
# duplicates:是否允许区间重复

bins设置为整数,将一维数组平均分为5份

arr = np.array([1,77,10,89,36,12,58,62,5,40,32,18,20,25,30,100])
c = pd.cut(arr,5,precision=1)
print(c)
# [(0.9, 20.8], (60.4, 80.2], (0.9, 20.8], (80.2, 100.0], (20.8, 40.6], ..., (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], (80.2, 100.0]]
# Length: 16
# Categories (5, interval[float64]): [(0.9, 20.8] < (20.8, 40.6] < (40.6, 60.4] < (60.4, 80.2] < (80.2, 100.0]]

系统自动根据数组中数值的大小将原数据平均分为5分,每个区间间隔为19.8。整个区间的起点为(1,100],由于右侧包含了100因此最大区间的最大值无需扩展,而由于不包括1,因此最小区间的最小值需向左扩展0.1% * 100 = 0.1,即1-0.1 = 0.9。

设置retbins=True,会将分割区间以数组形式显示出来,这个参数一般在bins设置为整数时使用,因为其他bins两种方式都是自定义了这个区间。

arr = np.array([1,5,10,40,36,12,58,62,77,89,100,18,20,25,30,32])
c = pd.cut(arr,5,precision=1,retbins = True)
print(c)
# ([(0.9, 20.8], (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], ..., (0.9, 20.8], (0.9, 20.8], (20.8, 40.6], (20.8, 40.6], (20.8, 40.6]]
# Length: 16
# Categories (5, interval[float64]): [(0.9, 20.8] < (20.8, 40.6] < (40.6, 60.4] < (60.4, 80.2] < (80.2, 100.0]], \
# array([ 0.901, 20.8 , 40.6 , 60.4 , 80.2 , 100. ]))

bins自定义分组序列,并指定lables

c = pd.cut(arr,bins = [1,5,18,35,50,100],labels = ['幼儿','少年','青年','中年','老年'],precision=1)
print(c)
# [NaN, 老年, 少年, 老年, 中年, ..., 少年, 青年, 青年, 青年, 老年]
# Length: 16
# Categories (5, object): [幼儿 < 少年 < 青年 < 中年 < 老年]

上述示例的意思是,将原数组按照1-5、5-18、18-35、35-50、50-100(左开右闭)的区间进行划分,划分后分别对应幼儿、少年、青年、中年、老年。

但是由于默认为左开区间所以无法将最小值划到一个给定的区间(如果设置right=False则最大值无对应区间),因此原数组中的第一个数1返回的是NaN,可以设置参数include_lowest=True,则可将最小是包含进去。

c = pd.cut(arr,bins = [1,5,18,35,50,100],labels = ['幼儿','少年','青年','中年','老年'],precision=1,include_lowest=True)
print(c)
# [幼儿, 老年, 少年, 老年, 中年, ..., 少年, 青年, 青年, 青年, 老年]
# Length: 16
# Categories (5, object): [幼儿 < 少年 < 青年 < 中年 < 老年]

上述例子的返回结果包含三项,第一项是每个数属于哪个区间,第二个是原数组长度,第三个是Category对象

如果只想显示第一项、即数组中的每个值属于哪个区间,可设置为labels = False

c= pd.cut(arr,bins = [1,5,18,35,50,100],labels=False,include_lowest=True)
print(c)
# [0 0 1 3 3 1 4 4 4 4 4 1 2 2 2 2]

pandas之cut的更多相关文章

  1. pandas之cut(),qcut()

    功能:将数据进行离散化 可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂 1.pd.cut函数有7个参 ...

  2. 数据处理:12个使得效率倍增的pandas技巧

    数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习P ...

  3. pandas的离散化,面元划分

    pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) ...

  4. pandas 初识(三)

    Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...

  5. 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)

    在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...

  6. Pandas进阶之提升运行效率

    前言 如果你现在正在学习数据分析,或者正在从事数据分析行业,肯定会处理一些大数据集.pandas就是这些大数据集的一个很好的处理工具.那么pandas到底是什么呢?官方文档上说: " 快速, ...

  7. pandas优化

    目录 前言 使用Datetime数据节省时间 pandas数据的循环操作 使用itertuples() 和iterrows() 循环 Pandas的 .apply()方法 矢量化操作:使用.isin( ...

  8. 《利用Python进行数据分析》第7章学习笔记

    数据规整化:清理.转换.合并.重塑 合并数据集 pandas.merge pandas.concat combine_first 数据库风格的DataFrame合并 索引上的合并 join()实例方法 ...

  9. Python之数据规整化:清理、转换、合并、重塑

    Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象 ...

随机推荐

  1. 【总结-前台发送后台接收表单】MVC提交表单的四种方式

    https://www.cnblogs.com/chenwolong/p/Form.html#commentform 后台控制器接收前台表单参数三种方法: 一.普通参数 HTML标签name 和参数名 ...

  2. 通俗易懂的阿里Sentinel源码分析:如何向控制台发送心跳包?

    源码分析 public class Env { public static final Sph sph = new CtSph(); static { // 在Env类的静态代码块中, // 触发了一 ...

  3. Idea自带插件Groovy无法创建和启动

    前言 如果现在有人要开始完全重写 Java,那么 Groovy 就像是 Java 2.0.Groovy 并没有取代 Java,而是作为 Java 的补充,它提供了更简单.更灵活的语法,可以在运行时动态 ...

  4. Java程序员阅读源码的小技巧,原来大牛都是这样读的,赶紧看看!

    今天介跟大家分享一下我平时阅读源码的几个小技巧,对于阅读java中间件如Spring.Dubbo等框架源码的同学有一定帮助. 本文基于Eclipse IDE,我们每天都使用的IDE其实提供了很多强大的 ...

  5. C++中string转换为char*类型返回后乱码问题

    问题来源: 在写二叉树序列化与反序列化时发现序列化函数为char* Serialize1(TreeNode *root)  其函数返回类型为char*,但是我在实现的过程中为了更方便的操作添加字符串使 ...

  6. Python——查看目录下所有的目录和文件

    写程序我们经常会遇到需要遍历某一个目录下的所有文件这个操作,然而python有现成的库,只需要2个循环就可以搞定. import os def all_path(dirname): result = ...

  7. day04总结

    print("陈少最帅!!!") 输出结果: 陈少最帅!!! 可以变,不可变数据类型#1.可变类型:list,dict#在值改变的情况下,id号不变,也就是说内存地址不变,证明就是 ...

  8. hacknos靶机实战

    工具: kali 192.168.1.6 nmap 打开使用nmap -sP 192.168.1.0/24 扫描活跃的主机 发现目标ip 使用nmap 查看开启了什么服务Nmap -v -A -PN ...

  9. scala 数据结构(二):数组

    1 数组-定长数组(声明泛型) 第一种方式定义数组 这里的数组等同于Java中的数组,中括号的类型就是数组的类型 val arr1 = new Array[Int](10) //赋值,集合元素采用小括 ...

  10. redis(六):Redis 字符串(String)

    Redis 字符串数据类型的相关命令用于管理 redis 字符串值,基本语法如下: 语法 redis 127.0.0.1:6379> COMMAND KEY_NAME 实例 redis 127. ...