python数据结构树和二叉树简介
一、树的定义
树形结构是一类重要的非线性结构。树形结构是结点之间有分支,并具有层次关系的结构。它非常类似于自然界中的树。
树的递归定义:
树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:
(1)有且仅有一个特定的称为根(Root)的结点;
(2)其余的结点可分为m(m≥0)个互不相交的子集Tl,T2,…,Tm,其中每个子集本身又是一棵树,并称其为根的子树(Subree)。
二、二叉树的定义
二叉树是由n(n≥0)个结点组成的有限集合、每个结点最多有两个子树的有序树。它或者是空集,或者是由一个根和称为左、右子树的两个不相交的二叉树组成。
特点:
(1)二叉树是有序树,即使只有一个子树,也必须区分左、右子树;
(2)二叉树的每个结点的度不能大于2,只能取0、1、2三者之一;
(3)二叉树中所有结点的形态有5种:空结点、无左右子树的结点、只有左子树的结点、只有右子树的结点和具有左右子树的结点。
三、二叉树的性质
1 :在二叉树的第i层上至少有2^(i-1)个结点
2:深度为k的二叉树至多有2^(k-1)个结点
3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
4:具有n个结点的完全二叉树的深度是【log2n】+1(向下取整)
5:如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任一结点i(1in),有:
如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是i/2
如果2i>n,则结点i无左孩子;如果2in,则其左孩子是2i
如果2i+1>n,则结点i无右孩子;如果2i+1n,则其右孩子是2i+1
二叉树深度算法如下:
深度为m的满二叉树有2^m-1个结点;
具有n个结点的完全二叉树的深度为[log2n]+1.(log2n是以2为底n的对数)

扩展资料:
二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。
在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。
四、二叉树的存储结构
二叉树的存储结构有顺序存储结构、链式存储结构
顺序存储:结构采用一维数组存储的。根据二叉树的性质6可计算出双亲结点、左右孩子结点的下标。因此满二叉树、完全二叉树的存储可采用一维数组,把结点按从上到下、从左到右的顺序存放在数组中,结点之间的关系可由性质6的公式计算得到。
链式存储:结构采用链表存储二叉树中的数据元素,用链建立二叉树中结点之间的关系。二叉树最常用的链式存储结构是二叉链,每个结点包含三个域,分别是数据元素域data、左孩子链域lChild和右孩子链域rChild。与单链表带头结点和不带头结点的两种情况相似,二叉链存储结构的二叉树也有带头结点和不带头结点两种
五、二叉树的操作
python数据结构之二叉树的建立实例
python数据结构之二叉树的遍历实例
python数据结构之二叉树的统计与转换实例
python数据结构树和二叉树简介的更多相关文章
- Python 数据结构 树
什么是树 数是一种抽象的数据类型(ADT)或是作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合,它是由n(n>1)的有限个节点和节点之间的边组成的一个有层次关系的集合. 树的组成 ...
- 常见基本数据结构——树,二叉树,二叉查找树,AVL树
常见数据结构——树 处理大量的数据时,链表的线性时间太慢了,不宜使用.在树的数据结构中,其大部分的运行时间平均为O(logN).并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界. 树的定 ...
- Java数据结构——树、二叉树的理论知识汇总
通用树的理论知识 一.树的定义 由一个或多个(n>=0)节点组成的有限集合T,有且仅有一个节点称为根(root),当n>1时,其7余的节点为m(m>=0)个互不相交的有限集合T1,T ...
- [ACM训练] 数据结构----树、二叉树----c++ && python
树结构,尤其是二叉树结构是算法中常遇见的,这里根据学习过程做一个总结. 二叉树所涉及到的知识点有:满二叉树与完全二叉树.节点数目的关系.节点数与二叉树高度的关系.层次遍历.深度优先遍历.广度优先遍历等 ...
- python数据结构与算法——二叉树结构与遍历方法
先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历 采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # ...
- Python数据结构-树与树的遍历
树:是一种抽象的数据类型 树的作用:用来模拟树状结构性质的数据集合 树的特点: 每个节点有零个或者多个节点 没有父节点的节点,叫做根节点 每一个根节点有且只有一个父节点 除了根节点外,每个节点可以分成 ...
- Python数据结构--树遍历算法
''' 遍历是访问树的所有节点的过程,也可以打印它们的值. 因为所有节点都通过边(链接)连接,所以始终从根(头)节点开始. 也就是说,我们不能随机访问树中的一个节点. 这里介绍三种方式来遍历一棵树 - ...
- python数据结构与算法
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...
- python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)
python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...
随机推荐
- 揭秘!containerd 镜像文件丢失问题,竟是镜像生成惹得祸
导语 作者李志宇,腾讯云后台开发工程师,日常负责集群节点和运行时相关的工作,熟悉 containerd.docker.runc 等运行时组件.近期在为某位客户提供技术支持过程中,遇到了 contain ...
- 不要盲目使用新技术,说的就是你,JWT!
其实我更想聊标题的前半部分,后半部分只是拉出来做典型的. 简历上写上一句,"热衷于学习新技术",孬管是不是真的,至少加分项是可以有的. 再看看标题,我是来搞笑的? 学习与使用,两回 ...
- 常用注解@Intdef与@Stringdef
1.优点 可以代替枚举,静态常量,可以让注解只在代码中存在,编译后就删除,可以省内存. 2.@IntDef 2.1 官网 https://developer.android.com/reference ...
- Spine学习七 - spine动画资源+ Unity Mecanim动画系统
前面已经讲过 Spine自己动画状态机的动画融合,但是万一有哥们就是想要使用Unity的动画系统,那有没有办法呢?答案是肯定的,接下来,就说说如何实现: 1. 在project面板找打你导入的Spin ...
- ACwing 你能回答这些问题吗(线段树求最大连续字段和)
给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“1 x y”,查询区间 [x,y] 中的最大连续子段和,即 maxx≤l≤r≤ymaxx≤l≤r≤y{∑ri=lA[i]∑i=l ...
- Oracle中树形查询使用方法
树形查询一般用于上下级场合,使用的特殊sql语法包括level,prior,start with,connect by等,下面将就实例来说明其用法. 表定义: create table tb_hier ...
- Python爬Boss,找工作,快人一步!!!
通过职位搜索"Python开发",看下搜索的结果: https://www.zhipin.com/job_detail/?query=python开发&city=10102 ...
- python基本数据类型和循环、判断
一.语言分为2种: 编译型语言:写完代码不能执行,得先编译 c.c++.c#,速度相对解释性语言更快,因为只需要执行一次解释型语言:不需要编译,直接执行 python.java.php.js.go.r ...
- Unit5:广播
静态广播 1.定义 public class TestBroadCast extends BroadcastReceiver { @Override public void onReceive(Con ...
- 在 Flutter 中使用 TensorFlow Lite 插件实现文字分类
如果您希望能有一种简单.高效且灵活的方式把 TensorFlow 模型集成到 Flutter 应用里,那请您一定不要错过我们今天介绍的这个全新插件 tflite_flutter.这个插件的开发者是 G ...