欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

Flink处理函数实战系列链接

  1. 深入了解ProcessFunction的状态操作(Flink-1.10)
  2. ProcessFunction
  3. KeyedProcessFunction类
  4. ProcessAllWindowFunction(窗口处理)
  5. CoProcessFunction(双流处理)

本篇概览

  • 本文是《Flink处理函数实战》系列的第五篇,学习内容是如何同时处理两个数据源的数据;
  • 试想在面对两个输入流时,如果这两个流的数据之间有业务关系,该如何编码实现呢,例如下图中的操作,同时监听9998和9999端口,将收到的输出分别处理后,再由同一个sink处理(打印):

  • Flink支持的方式是扩展CoProcessFunction来处理,为了更清楚认识,我们把KeyedProcessFunction和CoProcessFunction的类图摆在一起看,如下所示:

  • 从上图可见,CoProcessFunction和KeyedProcessFunction的继承关系一样,另外CoProcessFunction自身也很简单,在processElement1和processElement2中分别处理两个上游流入的数据即可,并且也支持定时器设置;

编码实战

接下来咱们开发一个应用来体验CoProcessFunction,功能非常简单,描述如下:

  1. 建两个数据源,数据分别来自本地9998和9999端口;
  2. 每个端口收到类似aaa,123这样的数据,转成Tuple2实例,f0是aaa,f1是123;
  3. 在CoProcessFunction的实现类中,对每个数据源的数据都打日志,然后全部传到下游算子;
  4. 下游操作是打印,因此9998和9999端口收到的所有数据都会在控制台打印出来;
  5. 整个demo的功能如下图所示:

  • 接下来编码实现上述功能;

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示:

Map算子

  1. 做一个map算子,用来将字符串aaa,123转成Tuple2实例,f0是aaa,f1是123;
  2. 算子名为WordCountMap.java:
package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.StringUtils; public class WordCountMap implements MapFunction<String, Tuple2<String, Integer>> {
@Override
public Tuple2<String, Integer> map(String s) throws Exception { if(StringUtils.isNullOrWhitespaceOnly(s)) {
System.out.println("invalid line");
return null;
} String[] array = s.split(","); if(null==array || array.length<2) {
System.out.println("invalid line for array");
return null;
} return new Tuple2<>(array[0], Integer.valueOf(array[1]));
}
}

便于扩展的抽象类

  • 开发一个抽象类,将前面图中提到的监听端口、map处理、keyby处理、打印都做到这个抽象类中,但是CoProcessFunction的逻辑却不放在这里,而是交给子类来实现,这样如果我们想进一步实践和扩展CoProcessFunction的能力,只要在子类中专注做好CoProcessFunction相关开发即可,如下图,红色部分交给子类实现,其余的都是抽象类完成的:

  • 抽象类AbstractCoProcessFunctionExecutor.java,源码如下,稍后会说明几个关键点:
package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction; /**
* @author will
* @email zq2599@gmail.com
* @date 2020-11-09 17:33
* @description 串起整个逻辑的执行类,用于体验CoProcessFunction
*/
public abstract class AbstractCoProcessFunctionExecutor { /**
* 返回CoProcessFunction的实例,这个方法留给子类实现
* @return
*/
protected abstract CoProcessFunction<
Tuple2<String, Integer>,
Tuple2<String, Integer>,
Tuple2<String, Integer>> getCoProcessFunctionInstance(); /**
* 监听根据指定的端口,
* 得到的数据先通过map转为Tuple2实例,
* 给元素加入时间戳,
* 再按f0字段分区,
* 将分区后的KeyedStream返回
* @param port
* @return
*/
protected KeyedStream<Tuple2<String, Integer>, Tuple> buildStreamFromSocket(StreamExecutionEnvironment env, int port) {
return env
// 监听端口
.socketTextStream("localhost", port)
// 得到的字符串"aaa,3"转成Tuple2实例,f0="aaa",f1=3
.map(new WordCountMap())
// 将单词作为key分区
.keyBy(0);
} /**
* 如果子类有侧输出需要处理,请重写此方法,会在主流程执行完毕后被调用
*/
protected void doSideOutput(SingleOutputStreamOperator<Tuple2<String, Integer>> mainDataStream) {
} /**
* 执行业务的方法
* @throws Exception
*/
public void execute() throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 并行度1
env.setParallelism(1); // 监听9998端口的输入
KeyedStream<Tuple2<String, Integer>, Tuple> stream1 = buildStreamFromSocket(env, 9998); // 监听9999端口的输入
KeyedStream<Tuple2<String, Integer>, Tuple> stream2 = buildStreamFromSocket(env, 9999); SingleOutputStreamOperator<Tuple2<String, Integer>> mainDataStream = stream1
// 两个流连接
.connect(stream2)
// 执行低阶处理函数,具体处理逻辑在子类中实现
.process(getCoProcessFunctionInstance()); // 将低阶处理函数输出的元素全部打印出来
mainDataStream.print(); // 侧输出相关逻辑,子类有侧输出需求时重写此方法
doSideOutput(mainDataStream); // 执行
env.execute("ProcessFunction demo : CoProcessFunction");
}
}
  • 关键点之一:一共有两个数据源,每个源的处理逻辑都封装到buildStreamFromSocket方法中;
  • 关键点之二:stream1.connect(stream2)将两个流连接起来;
  • 关键点之三:process接收CoProcessFunction实例,合并后的流的处理逻辑就在这里面;
  • 关键点之四:getCoProcessFunctionInstance是抽象方法,返回CoProcessFunction实例,交给子类实现,所以CoProcessFunction中做什么事情完全由子类决定;
  • 关键点之五:doSideOutput方法中啥也没做,但是在主流程代码的末尾会被调用,如果子类有侧输出(SideOutput)的需求,重写此方法即可,此方法的入参是处理过的数据集,可以从这里取得侧输出;

子类决定CoProcessFunction的功能

  1. 子类CollectEveryOne.java如下所示,逻辑很简单,将每个源的上游数据直接输出到下游算子:
package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; public class CollectEveryOne extends AbstractCoProcessFunctionExecutor { private static final Logger logger = LoggerFactory.getLogger(CollectEveryOne.class); @Override
protected CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> getCoProcessFunctionInstance() {
return new CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>>() { @Override
public void processElement1(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) {
logger.info("处理1号流的元素:{},", value);
out.collect(value);
} @Override
public void processElement2(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) {
logger.info("处理2号流的元素:{}", value);
out.collect(value);
}
};
} public static void main(String[] args) throws Exception {
new CollectEveryOne().execute();
}
}
  1. 上述代码中,CoProcessFunction后面的泛型定义很长:<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> ,一共三个Tuple2,分别代表一号数据源输入、二号数据源输入、下游输出的类型;

验证

  1. 分别开启本机的9998和9999端口,我这里是MacBook,执行nc -l 9998和nc -l 9999
  2. 启动Flink应用,如果您和我一样是Mac电脑,直接运行CollectEveryOne.main方法即可(如果是windows电脑,我这没试过,不过做成jar在线部署也是可以的);
  3. 在监听9998和9999端口的控制台分别输入aaa,111和bbb,222
  4. 以下是flink控制台输出的内容,可见processElement1和processElement1方法的日志代码已经执行,并且print方法作为最下游,将两个数据源的数据都打印出来了,符合预期:
12:45:38,774 INFO CollectEveryOne - 处理1号流的元素:(aaa,111),
(aaa,111)
12:45:43,816 INFO CollectEveryOne - 处理2号流的元素:(bbb,222)
(bbb,222)

更多

  • 以上就是最基本的CoProcessFunction用法,其实CoProcessFunction的使用远不及此,结合状态,可以processElement1获得更多二号流的元素信息,另外还可以结合定时器来约束两个流协同处理的等待时间,您可以参考前面文章中的状态和定时器来自行尝试;

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

https://github.com/zq2599/blog_demos

Flink处理函数实战之五:CoProcessFunction(双流处理)的更多相关文章

  1. Flink处理函数实战之一:深入了解ProcessFunction的状态(Flink-1.10)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. Flink处理函数实战之二:ProcessFunction类

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. Flink处理函数实战之三:KeyedProcessFunction类

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. Flink处理函数实战之四:窗口处理

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. [Java聊天室server]实战之五 读写循环(服务端)

    前言 学习不论什么一个稍有难度的技术,要对其有充分理性的分析,之后果断做出决定---->也就是人们常说的"多谋善断":本系列尽管涉及的是socket相关的知识,但学习之前,更 ...

  6. Python基础入门-函数实战登录功能

    ''' 函数实战: .加法计算器 .过滤器 .登录功能实战 ''' def add(a,b): return a+b def login_order(): return 'asdfasdfdasfad ...

  7. Mysql 开窗函数实战

    Mysql 开窗函数实战 Mysql 开窗函数在Mysql8.0+ 中可以得以使用,实在且好用. row number() over rank() over dense rank() ntile() ...

  8. Flink的sink实战之一:初探

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. Flink的sink实战之二:kafka

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

随机推荐

  1. kubernetes教程第一章-kubeadm高可用安装k8s集群

    目录 Kubeadm高可用安装k8s集群 kubeadm高可用安装1.18基本说明 k8s高可用架构解析 kubeadm基本环境配置 kubeadm基本组件安装 kubeadm集群初始化 高可用Mas ...

  2. codevs1228 (dfs序+线段树)

    1228 苹果树  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 在卡卡的房子外面,有一棵苹果树.每年的春天,树上总会结 ...

  3. django—路由相关

    django不同版本的路由配置 django 2之前,配置urlpatterns使用的是url方法 django 2之后,配置urlpatterns使用的是path方法 path与url的区别: ur ...

  4. JS变量作用域与解构赋值

    用var变量是有作用域的 变量在函数内部声明时,那么该变量只属于整个函数体,函数外不可调用 当两个不同的函数里,使用了用一个相同的变量名,二者不互相影响,相互独立 遇到嵌套函数时,外部函数不可调用内部 ...

  5. volatile到底做了什么:

    volatile到底做了什么: 禁止了指令重排 保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量值,这个新值对其他线程是立即可见的 不保证原子性(线程不安全) synchroniz ...

  6. python3配置socks5代理进行爬取

    一.代码 #!/usr/bin/python # -*- coding: UTF-8 -*- import requests import socket import socks SOCKS5_PRO ...

  7. 常见的Python运行时错误

    date: 2020-04-01 14:25:00 updated: 2020-04-01 14:25:00 常见的Python运行时错误 摘自 菜鸟学Python 公众号 1. SyntaxErro ...

  8. JAVA NIO 基础学习

    package com.hrd.netty.demo.jnio; import java.io.BufferedReader; import java.io.IOException; import j ...

  9. docker搭建redis集群

    一.简介 docker作为一个容器技术,在搭建资源隔离性服务上具有很大的优势,在一台服务器上可以启动多个docker容器,感觉每个在容器里面部署的服务就像是部署在不同的服务器上.此次基于docker以 ...

  10. Spring源码笔记

    Spring Version:5.1.12 ApplicationContext 常用的实例化方式: ClassPathXmlApplicationContext FileSystemXmlAppli ...