题目链接

设 \(0\) 为单调伸长, \(1\) 为单调伸短。

设 \(f[i][j][l][r][x(0 / 1)][y (0 / 1)]\) 为第 \(i\) 行,已经选出\(j\)个格子,第\(i\)行选择了\([l, r]\) 区间的最大值。左右端点\(x, y\)分别为 单调伸长 / 单调伸短 的最大权值。

状态转移:

  1. 若 \(x = 0, y = 0\),则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0][0]\} + cost(i, l, r)\) ,其中\(l <= l' <= r' <= r, j >= r - l + 1\)。

  2. 若 \(x = 0, y = 1\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0][0 / 1]\} + cost(i, l, r)\),其中\(l <= l' <= r <= r', j >= r - l + 1\)。

  3. 若 \(x = 1, y = 0\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0 / 1][0]\} + cost(i, l, r)\),其中\(l' <= l <= r' <= r, j >= r - l + 1\) 。

  4. 若 \(x = 1, y = 1\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0 / 1][0 / 1]\} + cost(i, l, r)\),其中\(l' <= l <= r <= r', j >= r - l + 1\) 。

初始状态: \(f[i][0][l][r][0][0] = 0 (0 <= i <= n, 1 <= l <= r <= m)\),其余为负无穷。

目标:\(max\{f[i][k][l][r][0 / 1][0 / 1]\} (1 <= i <= n)\)

输出方案只需通过状态转移延展即可。\(cost(i, l, r)\) 用前缀和计算​

时间复杂度\(O(n ^ 7)\)

C++ 代码

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 16; struct S{
int i, j, l, r, x, y;
}pre[N][N * N][N][N][2][2], t; int n, m, k, a[N][N], f[N][N * N][N][N][2][2];
int ans = 0; int inline cost(int i, int l, int r){
return a[i][r] - a[i][l - 1];
} void print(S x){
if(x.j == 0) return;
print(pre[x.i][x.j][x.l][x.r][x.x][x.y]);
for(int i = x.l; i <= x.r; i++)
printf("%d %d\n", x.i, i);
} int main(){
memset(f, 0xcf, sizeof f); scanf("%d%d%d", &n, &m, &k);
for(int r = 0; r <= n; r++) {
for(int i = 1; i <= m; i++){
for(int j = i; j <= m; j++)
f[r][0][i][j][0][0] = 0;
}
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &a[i][j]), a[i][j] += a[i][j - 1]; for(int i = 1; i <= n; i++){
for(int j = 1; j <= k; j++){
for(int l = 1; l <= m; l++){
for(int r = l; r <= m; r++){
if(j < r - l + 1) continue; //x = 0, y = 0;
for(int l1 = l; l1 <= r; l1++){
for(int r1 = l1; r1 <= r; r1++){
int &v = f[i][j][l][r][0][0], val = f[i - 1][j - (r - l + 1)][l1][r1][0][0] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][0][0] = (S){i - 1, j - (r - l + 1), l1, r1, 0, 0};
}
}
}
//x = 0, y = 1;
for(int l1 = l; l1 <= r; l1++){
for(int r1 = r; r1 <= m; r1++){
for(int y1 = 0; y1 < 2; y1++) {
int &v = f[i][j][l][r][0][1], val = f[i - 1][j - (r - l + 1)][l1][r1][0][y1] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][0][1] = (S){i - 1, j - (r - l + 1), l1, r1, 0, y1};
}
}
}
} // x = 1, y = 0;
for(int l1 = 1; l1 <= l; l1++){
for(int r1 = l; r1 <= r; r1++){
for(int x1 = 0; x1 < 2; x1++) {
int &v = f[i][j][l][r][1][0], val = f[i - 1][j - (r - l + 1)][l1][r1][x1][0] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][1][0] = (S){i - 1, j - (r - l + 1), l1, r1, x1, 0};
}
}
}
} // x = 1, y = 1;
for(int l1 = 1; l1 <= l; l1++){
for(int r1 = r; r1 <= m; r1++){
for(int x1 = 0; x1 < 2; x1++) {
for(int y1 = 0; y1 < 2; y1++) {
int &v = f[i][j][l][r][1][1], val = f[i - 1][j - (r - l + 1)][l1][r1][x1][y1] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][1][1] = (S){i - 1, j - (r - l + 1), l1, r1, x1, y1};
}
}
}
}
}
if(j == k){
for(int x = 0; x < 2; x++) {
for(int y = 0; y < 2; y++) {
if(ans < f[i][j][l][r][x][y]) {
ans = f[i][j][l][r][x][y], t = (S){i, j, l, r, x, y};
}
}
}
}
}
}
}
}
printf("Oil : %d\n", ans);
print(t);
return 0;
}

AcWing 276. I-区域的更多相关文章

  1. ASP.Net MVC开发基础学习笔记(5):区域、模板页与WebAPI初步

    一.区域—麻雀虽小,五脏俱全的迷你MVC项目 1.1 Area的兴起 为了方便大规模网站中的管理大量文件,在ASP.NET MVC 2.0版本中引入了一个新概念—区域(Area). 在项目上右击创建新 ...

  2. 使用SilverLight开发区域地图分析模块

    本人最近接收开发一个代码模块,功能主要是在页面上显示安徽省市地图,并且在鼠标移动到地图某市区域时,显示当前区域的各类信息等,一开始准备用百度地图,高德地图等地图工具进行开发,最后发现都不适合进行此类开 ...

  3. 关于使用Html5 canvas、 map、jquery构造不规则变色点击区域 热点区域

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. dreamweaver中的 map怎么调用?_制作热点图像区域

    我们浏览网页时,经常看到一些图片上会出现特别的超链接,即在一张图片上有多个局部区域和不同的网页链接,比如地图链接. 这就是映射图像(Image Map),它是指一幅根据链接对象不同而被人为划分为若干指 ...

  5. Java自动内存管理机制学习(一):Java内存区域与内存溢出异常

    备注:本文引用自<深入理解Java虚拟机第二版> 2.1 运行时数据区域 Java虚拟机在执行Java程序的过程中把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创 ...

  6. Highcharts 基本区域图;Highcharts 使用负数区域图;Highcharts 堆叠区域图;Highcharts 百分比堆叠区域图

    Highcharts 基本区域图 配置 chart chart.type 配置项用于设定图表类型,默认为 "line",本章节我们使用 'area'. var chart = { ...

  7. AcWing 901. 滑雪

    地址 https://www.acwing.com/problem/content/description/903/ 题目描述给定一个R行C列的矩阵,表示一个矩形网格滑雪场. 矩阵中第 i 行第 j ...

  8. AcWing 248. 窗内的星星 (扫描线)打卡

    题目:https://www.acwing.com/problem/content/250/ 题意:给你n个点,现在问你能每个点都有个权值,问你能覆盖最多的权值是多少,边界不算 思路:这个其实和我之前 ...

  9. ACwing算法基础课听课笔记(第一章,基础算法二)(差分)

    前缀和以及二维前缀和在这里就不写了. 差分:是前缀和的逆运算 ACWING二维差分矩阵    每一个二维数组上的元素都可以用(x,y)表示,对于某一元素(x0,y0),其前缀和就是以该点作为右下角以整 ...

随机推荐

  1. Ubuntu18.04上安装CUDA_10.1(nvidia-driver)和cuDNN_7.6.5

    本文是在Ubuntu18.04.5服务器上安装CUDA_10.1(nvidia-driver455)和cuDNN_7.6.5, Ubuntu 18.04.5 CUDA_10.1 (nvidia-dri ...

  2. Redis在springboot项目的使用

    一.在pom.xml配置redis依赖 <!-- redis客户端代码 --> <dependency> <groupId>org.springframework. ...

  3. ceph与flashcache的around模式结合启动问题

    问题 通过对我们的启动流程看了下,目前是穿到一个脚本里面的,然后这个脚本是用无限循环的方式去执行一些事情,这个地方不符合松耦合的设计,一个模块做一个事情,两个并不相关的功能不要嵌入另一个脚本,否则出现 ...

  4. Qt For Android 环境搭建

    由于时间有限,未抽出时间进行android环境搭建整理的流程,这里先贴出几个参考的地址 https://blog.csdn.net/foruok/article/details/23528293 此链 ...

  5. CSS属性(CSS盒子模型)

    1.CSS盒子模型 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=&q ...

  6. webug第九关:URL跳转

    第九关:URL跳转 不太明白,看源码 接受了一个URL的参数

  7. 如何突出显示PDF文档中的一些重要文本信息

    PDF文档中如果存在着太多的文字时,阅读者会容易遗漏很多重要的信息.但如果,文档中存在着一些特殊标记的文字时,比如标黄.标红文本时,很多人都会给予特别关注. 因此,当大家在使用pdfFactory专业 ...

  8. jquery删除文件

    1 <div class="panel panel-default"> 2 <div class="panel-body"> 3 < ...

  9. Linux没有netstat和ifconfig命令问题

    安装了精简版命令行centos7系统,运行netsta查看端口和ifconfig查看IP命令都提示找不到命令. 解决方法: yum search ifconfig 通过yum search 这个命令我 ...

  10. javaAgent打包找不到premain类文件解决

    agent 作用和开发 可以用独立于应用程序之外的代理(agent)程序来监测和协助运行在JVM上的应用程序.这种监测和协助包括但不限于获取JVM运行时状态,替换和修改类定义等. 由此可知agent ...