题目链接

设 \(0\) 为单调伸长, \(1\) 为单调伸短。

设 \(f[i][j][l][r][x(0 / 1)][y (0 / 1)]\) 为第 \(i\) 行,已经选出\(j\)个格子,第\(i\)行选择了\([l, r]\) 区间的最大值。左右端点\(x, y\)分别为 单调伸长 / 单调伸短 的最大权值。

状态转移:

  1. 若 \(x = 0, y = 0\),则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0][0]\} + cost(i, l, r)\) ,其中\(l <= l' <= r' <= r, j >= r - l + 1\)。

  2. 若 \(x = 0, y = 1\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0][0 / 1]\} + cost(i, l, r)\),其中\(l <= l' <= r <= r', j >= r - l + 1\)。

  3. 若 \(x = 1, y = 0\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0 / 1][0]\} + cost(i, l, r)\),其中\(l' <= l <= r' <= r, j >= r - l + 1\) 。

  4. 若 \(x = 1, y = 1\), 则 \(f[i][j][l][r][x][y] = max\{f[i - 1][j - (r - l + 1)][l'][r'][0 / 1][0 / 1]\} + cost(i, l, r)\),其中\(l' <= l <= r <= r', j >= r - l + 1\) 。

初始状态: \(f[i][0][l][r][0][0] = 0 (0 <= i <= n, 1 <= l <= r <= m)\),其余为负无穷。

目标:\(max\{f[i][k][l][r][0 / 1][0 / 1]\} (1 <= i <= n)\)

输出方案只需通过状态转移延展即可。\(cost(i, l, r)\) 用前缀和计算​

时间复杂度\(O(n ^ 7)\)

C++ 代码

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 16; struct S{
int i, j, l, r, x, y;
}pre[N][N * N][N][N][2][2], t; int n, m, k, a[N][N], f[N][N * N][N][N][2][2];
int ans = 0; int inline cost(int i, int l, int r){
return a[i][r] - a[i][l - 1];
} void print(S x){
if(x.j == 0) return;
print(pre[x.i][x.j][x.l][x.r][x.x][x.y]);
for(int i = x.l; i <= x.r; i++)
printf("%d %d\n", x.i, i);
} int main(){
memset(f, 0xcf, sizeof f); scanf("%d%d%d", &n, &m, &k);
for(int r = 0; r <= n; r++) {
for(int i = 1; i <= m; i++){
for(int j = i; j <= m; j++)
f[r][0][i][j][0][0] = 0;
}
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &a[i][j]), a[i][j] += a[i][j - 1]; for(int i = 1; i <= n; i++){
for(int j = 1; j <= k; j++){
for(int l = 1; l <= m; l++){
for(int r = l; r <= m; r++){
if(j < r - l + 1) continue; //x = 0, y = 0;
for(int l1 = l; l1 <= r; l1++){
for(int r1 = l1; r1 <= r; r1++){
int &v = f[i][j][l][r][0][0], val = f[i - 1][j - (r - l + 1)][l1][r1][0][0] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][0][0] = (S){i - 1, j - (r - l + 1), l1, r1, 0, 0};
}
}
}
//x = 0, y = 1;
for(int l1 = l; l1 <= r; l1++){
for(int r1 = r; r1 <= m; r1++){
for(int y1 = 0; y1 < 2; y1++) {
int &v = f[i][j][l][r][0][1], val = f[i - 1][j - (r - l + 1)][l1][r1][0][y1] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][0][1] = (S){i - 1, j - (r - l + 1), l1, r1, 0, y1};
}
}
}
} // x = 1, y = 0;
for(int l1 = 1; l1 <= l; l1++){
for(int r1 = l; r1 <= r; r1++){
for(int x1 = 0; x1 < 2; x1++) {
int &v = f[i][j][l][r][1][0], val = f[i - 1][j - (r - l + 1)][l1][r1][x1][0] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][1][0] = (S){i - 1, j - (r - l + 1), l1, r1, x1, 0};
}
}
}
} // x = 1, y = 1;
for(int l1 = 1; l1 <= l; l1++){
for(int r1 = r; r1 <= m; r1++){
for(int x1 = 0; x1 < 2; x1++) {
for(int y1 = 0; y1 < 2; y1++) {
int &v = f[i][j][l][r][1][1], val = f[i - 1][j - (r - l + 1)][l1][r1][x1][y1] + cost(i, l, r);
if(v < val) {
v = val, pre[i][j][l][r][1][1] = (S){i - 1, j - (r - l + 1), l1, r1, x1, y1};
}
}
}
}
}
if(j == k){
for(int x = 0; x < 2; x++) {
for(int y = 0; y < 2; y++) {
if(ans < f[i][j][l][r][x][y]) {
ans = f[i][j][l][r][x][y], t = (S){i, j, l, r, x, y};
}
}
}
}
}
}
}
}
printf("Oil : %d\n", ans);
print(t);
return 0;
}

AcWing 276. I-区域的更多相关文章

  1. ASP.Net MVC开发基础学习笔记(5):区域、模板页与WebAPI初步

    一.区域—麻雀虽小,五脏俱全的迷你MVC项目 1.1 Area的兴起 为了方便大规模网站中的管理大量文件,在ASP.NET MVC 2.0版本中引入了一个新概念—区域(Area). 在项目上右击创建新 ...

  2. 使用SilverLight开发区域地图分析模块

    本人最近接收开发一个代码模块,功能主要是在页面上显示安徽省市地图,并且在鼠标移动到地图某市区域时,显示当前区域的各类信息等,一开始准备用百度地图,高德地图等地图工具进行开发,最后发现都不适合进行此类开 ...

  3. 关于使用Html5 canvas、 map、jquery构造不规则变色点击区域 热点区域

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. dreamweaver中的 map怎么调用?_制作热点图像区域

    我们浏览网页时,经常看到一些图片上会出现特别的超链接,即在一张图片上有多个局部区域和不同的网页链接,比如地图链接. 这就是映射图像(Image Map),它是指一幅根据链接对象不同而被人为划分为若干指 ...

  5. Java自动内存管理机制学习(一):Java内存区域与内存溢出异常

    备注:本文引用自<深入理解Java虚拟机第二版> 2.1 运行时数据区域 Java虚拟机在执行Java程序的过程中把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创 ...

  6. Highcharts 基本区域图;Highcharts 使用负数区域图;Highcharts 堆叠区域图;Highcharts 百分比堆叠区域图

    Highcharts 基本区域图 配置 chart chart.type 配置项用于设定图表类型,默认为 "line",本章节我们使用 'area'. var chart = { ...

  7. AcWing 901. 滑雪

    地址 https://www.acwing.com/problem/content/description/903/ 题目描述给定一个R行C列的矩阵,表示一个矩形网格滑雪场. 矩阵中第 i 行第 j ...

  8. AcWing 248. 窗内的星星 (扫描线)打卡

    题目:https://www.acwing.com/problem/content/250/ 题意:给你n个点,现在问你能每个点都有个权值,问你能覆盖最多的权值是多少,边界不算 思路:这个其实和我之前 ...

  9. ACwing算法基础课听课笔记(第一章,基础算法二)(差分)

    前缀和以及二维前缀和在这里就不写了. 差分:是前缀和的逆运算 ACWING二维差分矩阵    每一个二维数组上的元素都可以用(x,y)表示,对于某一元素(x0,y0),其前缀和就是以该点作为右下角以整 ...

随机推荐

  1. linux 进程间通信 共享内存 shmat

    系统调用mmap()通过映射一个普通文件实现共享内存.系统V则是通过映射特殊文件系统shm中的文件实现进程间的共享内存通信.也就是说,每个共享内存区域对应特殊文件系统shm中的一个文件(这是通过shm ...

  2. java服务器部署开源项目(若依)

    1准备工作 (1)阿里云 centos_8_0_x64_20G_alibase_20200218.vhd [root@iZ2zeeqw5fxmm9zagf439aZ ~]# cat /etc/redh ...

  3. Ceph对象主本损坏的修复方法

    前言 问题的触发是在进行一个目录的查询的时候,osd就会挂掉,开始以为是osd操作超时了,后来发现每次访问这个对象都有问题 log [WRN] : slow request 60.793196 sec ...

  4. 使用ViewPager实现卡片叠加效果

    使用ViewPager实现卡片叠加效果 背景 在开发项目时,需要对 App的某个资源模块进行界面重构,其中在资源展示部分中新的交互以卡片叠加的效果替代了原来的资源组织树门禁展示方式.在新的资源展示方式 ...

  5. 这 5 个开源的能挣钱的 SpringBoot 项目,真TMD香!

    不得不佩服 Spring Boot 的生态如此强大,今天我给大家推荐几款 Gitee 上优秀的后台开源版本的管理系统,小伙伴们再也不用从头到尾撸一个项目了,简直就是接私活,挣钱的利器啊. SmartA ...

  6. USACO 2020 OPEN Favorite Colors【并查集-启发式合并-思考】

    题目链接 题意简述 仰慕喜欢同色奶牛的奶牛喜欢同色 (禁止套娃 ,求一种方案,奶牛喜欢的颜色种数最多,多种方案求字典序最小. 题目解析 这道题我最先想到的居然是二分+并查集,我在想啥 咳咳 首先,考虑 ...

  7. C++中STL的sort函数

    简单介绍C++ sort函数 这个函数需要STL算法头文件 #include <algorithm> using namespace std; 这个sort( , , )可以带两个参数也可 ...

  8. iMindMap思维导图中可以插入哪些附件?

    iMindMap(Windows系统)不仅拥有灵活的排版功能,而且还允许用户插入多种附件,丰富思维导图的内容.用户可以为思维导图添加图片.网址.录音等文件,让导图更显生动性.实用性. 将图片.录音等文 ...

  9. 常见的名片尺寸如何在CorelDRAW预设

    说到名片想必大家肯定不陌生,是我们生活中随处可见的物品,也是商家宣传必不可少的印刷物料.那么名片的尺寸是多少?我们做名片的时候该如何把握好名片的尺寸呢?在CDR中有专门的名片尺寸,下面小编就为大家简单 ...

  10. python应用(1):安装与使用

    程序员的基本工作是写程序,而写程序要用到编程语言,编程语言可以分为编译型语言跟解释型语言. 编译型语言,就是在执行代码之前,先把源代码编译(加链接)成另一种形式的代码,比如目标代码,或字节码,这种代码 ...