CF392B Tower of Hanoi
题目链接。
Description
三塔汉诺塔问题,给一个 \(3 \times 3\) 的矩阵 \(t\),\(t_{i, j}\) 表示从 \(i\) 塔移动一个盘子到 \(j\) 塔的花费。
初始状态 \(n\) 个盘子都在第一个盘子,要求将所有的移到第三个盘子,求最小花费。
Solution
显然可以间接移动,花费有可能更优,先用 Floyd 算法算出从 \(i\) 间接 / 直接移动到 \(j\) 的最小花费,设 \(d_{i,j}\) 表示从 \(i\) 到 \(j\) 的最小花费。
显然无后效性,考虑 \(dp\)。
状态设计
设 \(f_{i,a,b}\) 表示将 \(i\) 个盘子从 \(a\) 移动到 \(b\) 的最小花费。
初始状态
\(f_{1, a, b} = d_{a,b}\) 其余为正无穷
状态转移
不妨设另外一个盘子为 \(c\)。
先把 \(n\) 个盘子看做两个整体:第 \(n\) 个盘子和 \(n - 1\) 个盘子,这样可以 DP 了。
通过观察发现有两个可能成为最优的转移方式:
- 将 \(n - 1\) 个盘子 \(a \Rightarrow c\),第 \(n\) 个盘子 \(a \Rightarrow b\),然后再把 \(n - 1\) 个盘子 \(c \Rightarrow b\)。
- \(n - 1\) 个盘子 \(a \Rightarrow b\),第 \(n\) 个盘子 \(a \Rightarrow c\),\(n - 1\) 个盘子 \(b \Rightarrow a\),第 \(n\) 个盘子 \(c \Rightarrow b\),\(n - 1\) 个盘子 \(a \Rightarrow b\)。
其他的转移一定是这两种 + 反复横跳形成的。
将上面的方式翻译一下,即:
\(f_{i, a, b} \gets f_{i - 1, a,c} + t_{a,b} + f_{i - 1, c, b}\)
\(f_{i, a, b} \gets f_{i - 1, a,b} + t_{a,c} + f_{i - 1, b, a} + t_{c,b} + f_{i - 1, a, b}\)
值得注意的是这里不能用 \(d\),因为其他盘子不是空的,不能作为间接量。
时间复杂度
\(O(N)\)
Tips
注意开 long long !
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 45;
typedef long long LL;
int t[3][3], g[3][3], n;
LL f[N][3][3];
int main() {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) scanf("%d", &t[i][j]), g[i][j] = t[i][j];
scanf("%d", &n);
for (int k = 0; k < 3; k++)
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
t[i][j] = min(t[i][j], t[i][k] + t[k][j]);
memset(f, 0x3f, sizeof f);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
f[1][i][j] = t[i][j];
for (int i = 2; i <= n; i++) {
for (int a = 0; a < 3; a++) {
for (int b = 0; b < 3; b++) {
if (a == b) continue;
int c = 3 - a - b;
f[i][a][b] = min(f[i - 1][a][c] + g[a][b] + f[i - 1][c][b], f[i - 1][a][b] + g[a][c] + f[i - 1][b][a] + g[c][b] + f[i - 1][a][b]);
}
}
}
printf("%lld\n", f[n][0][2]);
return 0;
}
CF392B Tower of Hanoi的更多相关文章
- poj 3601 Tower of Hanoi
Tower of Hanoi Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 1853 Accepted: 635 De ...
- python递归三战:Sierpinski Triangle、Tower of Hanoi、Maze Exploring
本文已做成视频教程投稿b站(视频版相对文本版有一些改进),点击观看视频教程 本文主要通过三个实例来帮助大家理解递归(其展示动画已上传B站): 谢尔宾斯基三角形(Sierpinski Triangle) ...
- 汉诺塔问题(The Tower of Hanoi)的递归算法与非递归算法
非递归算法: 根据圆盘的数量确定柱子的排放顺序: 若n为偶数,按顺时针方向依次摆放 A B C: 若n为奇数,按顺时针方向依次摆放 A C B. 然后进行如下操作: (1)按顺时针方向把圆盘1从现在的 ...
- Tower of Hanoi问题
[问题描述] 有A, B, C三个塔座,A上套有n个直径不同的圆 盘,按直径从小到大叠放,形如宝塔,编号1, 2, 3 … n. 要求将n个圆盘从A移到C,叠放顺序不变,移动过程中遵循 下列原则: w ...
- [POJ1958][Strange Tower of Hanoi]
题目描述 求解 \(n\) 个盘子 \(4\) 座塔的 Hanoi 问题最少需要多少步 问题分析 考虑 \(3\) 座塔的 Hanoi 问题,记 \(f[i]\) 表示最少需要多少步, 则 \(f[i ...
- One usage of recurison: the tower of Hanoi
Statements: This blog was written by me, but most of content is quoted from book[Data Structure wit ...
- 汉诺塔 Tower of Hanoi
假设柱子标为A,B.C.要由A搬至C,在仅仅有一个盘子时,就将它直接搬至C:当有两个盘子,就将B作为辅助柱.假设盘数超过2个.将第二个下面的盘子遮起来,就非常easy了.每次处理两个盘子,也就是:A- ...
- codeforces 392B Tower of Hanoi
把前n个碟子从第一个塔移动到第三个塔有两种方法: 1.把前n-1个移动到第二个塔,把第n个移动到第三个塔,然后把前n-1个从第二个移动到第三个: 2.把前n-1个移动到第三个塔,把第n个移动到第二个塔 ...
- codeforces392B
CF392B Tower of Hanoi 题意翻译 河内塔是一个众所周知的数学难题.它由三根杆和一些可以滑动到任何杆上的不同尺寸的圆盘组成.难题从一个整齐的杆中开始,按照尺寸从小到大的顺序排列,最小 ...
随机推荐
- Java基础 之三 继承
1.子类 1) 定义子类 //假设父类(也叫做超类)是Employee类,用extends来表示继承 public class Manager extends Employee{ //域和方法 pri ...
- 2w+长文带你剖析ConcurrentHashMap~!
并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap ...
- 一次webpack小规模优化经历
这标题一点营销号味道都没有,怎么会有人看啊!(笑) 没人看也无所谓的文章背景: 八月份入职了新公司,是个好几年的老项目了,公司产品是存在很久了,但我接触到的代码版本保守估计应该是有个三年到四年这样的历 ...
- Linux(Centos6.8)配置Nginx环境
1.环境配置 操作系统:centos6.8 [root@host79 ~]# uname -a Linux host79.pluto 2.6.32-642.el6.x86_64 #1 SMP Tue ...
- MediaCodec编码OpenGL速度和清晰度均衡
## 概述 在安卓平台为了实现h264视频编码,我们通常可以使用libx264, ffmpeg等第三方视频编码库,但是如果对编码的速度有一定的要求,要实现实时甚至超实时的高速视频编码,我们并没有太 ...
- 02python开发之基本运算符
02 python开发之基本运算符 目录 02 python开发之基本运算符 2 基本运算符 2.1 算数运算符 2.1.1 种类 2.1.2 用法 2.2 比较运算符 2.2.1 种类 2.2.2 ...
- Guitar Pro使用技巧之乐段回放练习
Guitar Pro中的"回放"功能是我们在吉他练习中非常常用的一项功能.我们在吉他练习中碰到某一乐段比较练习比较困难时,我们就可以用鼠标在Guitar Pro上选中该乐段,然后进 ...
- Camtasia中对录制视频进行编辑——交互性
随着新媒体的广泛发展,视频处理的需要也逐渐变得越来越大,很多人都不知道市场上的哪款软件是比较符合大众需要的.有的软件功能写的天花乱坠,但是实际操作确很难.并不符合大众的简单需求. 今天我便给大家推荐一 ...
- FL Studio进行侧链编辑的三种方式
侧链是一种信号处理技术,通过它我们可以使用一个信号波形的振幅(音量)来控制另一个信号的某些参数.在电子音乐中,例如trance,house和techno,我们通常会用kick(底鼓)和bass进行演奏 ...
- H5,Css小姐又作画了
用H5和CSS3做出自己名字缩写. <html> <head> <meta charset="utf-8"> <title>name ...