题目

小豆现在有一个数 \(x\) ,初始值为 \(1\) 。 小豆有 \(Q\) 次操作,操作有两种类型:

  1. \(m\): \(x=x×m\),输出 \(x\mod M\) ;

  2. \(pos\): \(x=x/\) 第 \(pos\) 次操作所乘的数(保证第 \(pos\) 次操作一定为类型 \(1\),对于每一个类型 \(1\) 的操作至多会被除一次),输出 \(x\mod M\) 。

输入格式

一共有 \(t\) 组输入。

对于每一组输入,第一行是两个数字 \(Q,M\) 。

接下来 \(Q\) 行,每一行为操作类型 \(op\) ,操作编号或所乘的数字 \(m\) (保证所有的输入都是合法的)。

输出格式

对于每一个操作,输出一行,包含操作执行后的 \(x\mod M\)的值

样例输入

1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7

样例输出

2
1
2
20
10
1
6
42
504
84

数据范围

对于 \(20\%\) 的数据, \(1≤Q≤500\) ;

对于 \(100\%\) 的数据, \(1≤Q≤10^5,t≤5,M≤10^9\) 。

题解

使用线段树存储区间积, 每次除改回来一个点

代码

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5 + 10;
int n, p;
struct Tree {
struct Data { int L, r, mul; } data[N << 2];
void build(int v, int L, int r) {
data[v] = (Data){L, r, 1};
if (L == r) return;
int mid = L + r >> 1;
build(v << 1, L, mid), build(v << 1 | 1, mid + 1, r);
}
void update(int v, int A, int b, int k) {
if (data[v].L > b || data[v].r < A) return;
if (A <= data[v].L && data[v].r <= b)
return data[v].mul = 1ll * data[v].mul * k % p, void();
update(v << 1, A, b, k), update(v << 1 | 1, A, b, k);
}
void query(int v, int k) {
k = 1ll * k * data[v].mul % p;
if (data[v].L == data[v].r) return printf("%d\n", k), void();
query(v << 1, k), query(v << 1 | 1, k);
}
} tree;
struct OP { int pos, m; } a[N];
signed main() {
int T;
scanf("%lld", &T);
while (T--) {
scanf("%lld%lld", &n, &p);
tree.build(1, 1, n);
for (int i = 1; i <= n; i++) {
int op, x;
scanf("%lld%lld", &op, &x);
if (op == 1) a[i] = (OP){i, x};
else {
tree.update(1, a[x].pos, i - 1, a[x].m);
a[x] = (OP){0, 0};
}
}
for (int i = 1; i <= n; i++)
if (a[i].pos) tree.update(1, a[i].pos, n, a[i].m);
for (int i = 1; i <= n; i++) a[i] = (OP){0, 0};
tree.query(1, 1);
}
return 0;
}

TJOI2018 数学计算 题解的更多相关文章

  1. BZOJ5334:[TJOI2018]数学计算——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5334 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x ...

  2. BZOJ5334: [Tjoi2018]数学计算

    BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...

  3. [Tjoi2018]数学计算

    [Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...

  4. 题解【洛谷P4588】[TJOI2018]数学计算

    题目描述 小豆现在有一个数\(x\),初始值为\(1\).小豆有\(Q\)次操作,操作有两种类型: \(1\;m\):\(x=x\times m\)输出\(x\%mod\); \(2\;pos\):\ ...

  5. 【题解】Luogu P4588 [TJOI2018]数学计算

    原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m ...

  6. [BZOJ5334][TJOI2018]数学计算(exgcd/线段树)

    模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决. $O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了. #incl ...

  7. [TJOI2018]数学计算 线段树

    ---题面--- 题解: ,,,考场上看到这题,没想到竟然是省选原题QAQ,考场上把它当数学题想了好久,因为不知道怎么处理有些数没有逆元的问题....知道这是线段树后恍然大悟. 首先可以一开始就建出一 ...

  8. 洛谷P4588 [TJOI2018]数学计算 【线段树】

    题目链接 洛谷P4588 题解 用线段树维护即可 #include<algorithm> #include<iostream> #include<cstring> ...

  9. [洛谷P4588][TJOI2018]数学计算

    题目大意:有一个数$x$和取模的数$mod$,初始为$1$,有两个操作: $m:x=x\times m$并输出$x\% mod$ $pos:x=x/第pos次操作乘的数$(保证合法),并输出$x\%m ...

随机推荐

  1. java代码(8) ---guava字符串工具

    guava字符串工具 一.Joiner 根据指定的分隔符把字符串连接在一起,MapJoiner执行相同的操作,但是针对Map的key和value 分析源码可知:该类构造方法被private修饰,无法直 ...

  2. mysql 大表mysqldump迁移方案

    场景 一张历史表product_history 500万数据,凌晨的才会将正式表的数据迁移到历史表,此次需求将历史表迁移到一个更便宜的数据库实例进行存储. 条件 1.此表不是实时写,凌晨才会更新 2. ...

  3. 超强教程!在树莓派上构建多节点K8S集群!

    在很长一段时间里,我对于在树莓派上搭建Kubernetes集群极为感兴趣.在网络上找到一些教程并且跟着实操,我已经能够将Kubernetes安装在树莓派上,并在三个Pi集群中工作.然而,在master ...

  4. 字符串回文判断 js练习

    / 判断一个字符是否为回文,abcba是回文,. /*function fn2(str){ var str1=''; for(var i=str.length-1;i>=0;i--){ str1 ...

  5. Github上可以涨薪30k的Java教程和实战项目终于可以免费下载了

    写在前面 大家都知道 Github 是一个程序员福地,这里有各种厉害的开源框架.软件或者教程.这些东西对于我们学习和进步有着莫大的进步,所以我有了这个将 Github 上非常棒的 Java 开源项目整 ...

  6. [LOJ#500]「LibreOJ β Round」ZQC的拼图

    题目   点这里看题目. 分析   首先不难发现答案具有单调性,因此可以二分答案.答案上限为\(V=2m\times \max\{a_i, b_i\}\).   考虑如何去判断当前的答案.设这个答案为 ...

  7. Dorado开发——树形下拉框

    最近在学习Dorado开发的过程中,遇到了一个问题,Dorado的树形下拉框选择:Dorado默认情况下父节点和子节点都是可选的,而我要实现的是父节点不可选. 解决办法:在下拉框中,判断父子节点,点击 ...

  8. python反向遍历一个可迭代对象

    我们通常情况下都是正向遍历一个列表,下面是一种简单的反向遍历一个列表的方式. ## 正向遍历 >>>A = [9, 8, 7] >>>for index, a in ...

  9. 【01JMeter基础】线程组

    线程组 我们存在接口请求的地方,在JMeter中我们使用最多的模块,分为 setUp线程组.线程组.tearDown线程组 setUp线程组:不论如何排序,都会在所有的线程组中被最早执行,如果有多个s ...

  10. 特性速览| Apache Hudi 0.5.3版本正式发布

    1. 下载连接 源代码下载:Apache Hudi 0.5.3 Source Release (asc, sha512) 0.5.3版本相关jar包地址:https://repository.apac ...