在Spark Streaming程序中,若需要使用有状态的流来统计一些累积性的指标,比如各个商品的PV。简单的代码描述如下,使用mapWithState()算子:

val productPvStream = stream.mapPartitions(records => {
var result = new ListBuffer[(String, Int)]
for (record <- records) {
result += Tuple2(record.key(), 1)
}
result.iterator
}).reduceByKey(_ + _).mapWithState(
StateSpec.function((productId: String, pv: Option[Int], state: State[Int]) => {
val sum = pv.getOrElse(0) + state.getOption().getOrElse(0)
state.update(sum)
(productId, sum)
})).stateSnapshots()

PV并不是一直累加的,而是每天归零,重新统计数据。要达到在凌晨0点清除状态的目的,有以下两种方法。

编写脚本重启Streaming程序:

用crontab、Azkaban等在凌晨0点调度执行下面的Shell脚本:

stream_app_name='com.xyz.streaming.MallForwardStreaming'
cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l` if [ ${cnt} -eq 1 ]; then
pid=`ps aux | grep SparkSubmit | grep ${stream_app_name} | awk '{print $2}'`
kill -9 ${pid}
sleep 20
cnt=`ps aux | grep SparkSubmit | grep ${stream_app_name} | wc -l`
if [ ${cnt} -eq 0 ]; then
nohup sh /path/to/streaming/bin/mall_forward.sh > /path/to/streaming/logs/mall_forward.log 2>&1
fi
fi

这种方式最简单,也不需要对程序本身做任何改动。但随着同时运行的Streaming任务越来越多,就会显得越来越累赘了。

给StreamingContext设置超时

在程序启动之前,先计算出当前时间点距离第二天凌晨0点的毫秒数:

def msTillTomorrow = {
val now = new Date()
val tomorrow = new Date(now.getYear, now.getMonth, now.getDate + 1)
tomorrow.getTime - now.getTime
}

然后将Streaming程序的主要逻辑写在while(true)循环中,并且不像平常一样调用StreamingContext.awaitTermination()方法,而改用awaitTerminationOrTimeout()方法,即:

while (true) {
val ssc = new StreamingContext(sc, Seconds(BATCH_INTERVAL))
ssc.checkpoint(CHECKPOINT_DIR) // ...处理逻辑... ssc.start()
ssc.awaitTerminationOrTimeout(msTillTomorrow)
ssc.stop(false, true)
Thread.sleep(BATCH_INTERVAL * 1000)
}

在经过msTillTomorrow毫秒之后,StreamingContext就会超时,再调用其stop()方法(注意两个参数,stopSparkContext表示是否停止关联的SparkContext,stopGracefully表示是否优雅停止),就可以停止并重启StreamingContext。

以上两种方法都是仍然采用Spark Streaming的机制进行状态计算的。如果其他条件允许的话,还可以抛弃mapWithState(),直接借助外部存储自己维护状态。比如将Redis的Key设计为product_pv:[product_id]:[date],然后在Spark Streaming的每个批次中使用incrby指令,就能方便地统计PV了,不必考虑定时的问题。

转载自微信公众号:大数据技术与架构

周期性清除Spark Streaming流状态的方法的更多相关文章

  1. Dream_Spark-----Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码

    Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运 ...

  2. Spark Streaming流式处理

    Spark Streaming介绍 Spark Streaming概述 Spark Streaming makes it easy to build scalable fault-tolerant s ...

  3. Spark之 Spark Streaming流式处理

    SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streamin ...

  4. 5.Spark Streaming流计算框架的运行流程源码分析2

    1 spark streaming 程序代码实例 代码如下: object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[Str ...

  5. 大数据开发实战:Spark Streaming流计算开发

    1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数 ...

  6. Spark Streaming带状态更新

    带状态的更新是使用的updateStateByKey方法,里面传入一个函数,函数要自己写,注意需要设置checkpoint import org.apache.spark.streaming.kafk ...

  7. 贯通Spark Streaming流计算框架的运行源码

    本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): p ...

  8. 基于案例贯通 Spark Streaming 流计算框架的运行源码

    本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例 ...

  9. spark streaming流式计算---监听器

    随着对spark的了解,有时会觉得spark就像一个宝盒一样时不时会出现一些难以置信的新功能.每一个新功能被挖掘,就可以使开发过程变得更加便利一点.甚至使很多不可能完成或者完成起来比较复杂的操作,变成 ...

随机推荐

  1. 使用sqoop将mysql数据导入到hive中

    首先准备工具环境:hadoop2.7+mysql5.7+sqoop1.4+hive3.1 准备一张数据库表: 接下来就可以操作了... 一.将MySQL数据导入到hdfs 首先我测试将zhaopin表 ...

  2. POLARDB与其他关系型数据库对比

    https://baijiahao.baidu.com/s?id=1610828839695075926&wfr=spider&for=pc 前言 在数据库的选择上,MySQL成为中国 ...

  3. 【转载】VUE的背景图引入

    我现在的项目要将登录页面的背景引一图片做为背景图片,按原jsp中的写法,发现无法找到背景图片,最后从网上查资料,采用上面的写法,成功显示出背景图片,参考网址 https://blog.csdn.net ...

  4. 什么是urlencode编码

    今天看文章中看到了urlencode,不理解 ,故上网查了查,看到了如下的答案,在此记录下,以加深印象 urlencode编码:就是将字符串以URL编码,一种编码方式,主要为了解决url中中文乱码问题 ...

  5. 新建表后,在sqlserver manager中使用显示引用对象无效

    编辑>intelliSense(I)>刷新本地缓存.

  6. 常用的Git命令清单

    目录 名词解释 开卷必读 一. 新建代码库 二.配置 三. 忽略某个文件的改动 四. 增加/删除文件 五. 代码提交 六. 分支 七. 标签 八. 查看信息 九. 远程同步 十. 撤销 十一. Git ...

  7. PO,BO,VO,DTO,POJO,DAO,DO是什么?

    PO (Persistent Object)   持久化对象,表示实体数据.BO (Business Object)        业务对象,主要是把逻辑业务封装为一个对象 .VO (Value/Vi ...

  8. Hadoop伪分布式模式

    搭建在单一服务器 基于官方文档 http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SingleCluster ...

  9. CSS&&label_div

    Css-div部分 本章主要内容 0.基础知识 1.CSS概述 2.CSS基础语法 3.CSS选择器 4.CSS主要属性 5.CSS核心机制-盒子模型 6.CSS重点和难点-定位 7.综合示例 基础知 ...

  10. LeetCode430 扁平化多级双向链表

    您将获得一个双向链表,除了下一个和前一个指针之外,它还有一个子指针,可能指向单独的双向链表.这些子列表可能有一个或多个自己的子项,依此类推,生成多级数据结构,如下面的示例所示. 扁平化列表,使所有结点 ...