P3118 [USACO15JAN]Moovie Mooving G

Link

题目描述

Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer John for L (1 <= L <= 100,000,000) minutes, during which time she wants to watch movies continuously. She has N (1 <= N <= 20) movies to choose from, each of which has a certain duration and a set of showtimes during the day. Bessie may enter and exit a movie at any time during one if its showtimes, but she does not want to ever visit the same movie twice, and she cannot switch to another showtime of the same movie that overlaps the current showtime. Help Bessie by determining if it is possible for her to achieve her goal of watching movies continuously from time 0 through time L. If it is, determine the minimum number of movies she needs to see to achieve this goal (Bessie gets confused with plot lines if she watches too many movies).

'

奶牛贝西想连续看L (1 <= L <= 100,000,000)分钟的电影,有 N (1 <= N <= 20) 部电影可供选择,每部电影会在一天的不同

时段放映。

贝西可以在一部电影播放过程中的任何时间进入或退出放映厅。但她不愿意重复看到一部电影,所以每部电影她最多看到

一次。她也不能在看一部电影的过程中,换到另一个正在播放相同电影的放映厅。

请帮贝西计算她能够做到从 0 到 L 分钟连续不断地观看电影,如果能,请计算她最少看几部电影就行了。'

输入

The first line of input contains N and L. The next N lines each describe a movie. They begin with its integer duration, D (1 <= D <= L) and the number of showtimes, C (1 <= C <= 1000). The remaining C integers on the same line are each in the range 0..L, and give the starting time of one of the showings of the movie. Showtimes are distinct, in the range 0..L, and given in increasing order.

输出

A single integer indicating the minimum number of movies that Bessie

needs to see to achieve her goal. If this is impossible output -1

instead.

样例输入

4 100
50 3 15 30 55
40 2 0 65
0 2 20 90
20 1 0

样例输出

3


状态压缩 dp + 二分。

一开始看错题了,以为要看够 \(L\) 分钟,结果写了半天才发现是要从 \(0\) 一直看到 \(L\)

看到 \(n\) 的范围那么小 , \(L\) 的范围那么大,我们可以考虑把 \(L\) 的值压入数组中。

设 $f[s] $ 表示看电影集合为 \(s\) 的时候,看电影能持续到多长时间。

转移时我们可以枚举这个状态所有能看的电影,就会有转移。

f[i] = max(f[i], a[j][t] + t[i]) (i&(1<<j-1) == 1)

\(t\) 是使 \(a[j][t]\) >= f [i ^ (1<<(j-1))] 的数,即播放时间大于不看这部电影的延续的最长时间。

因为下一个电影的合法开始时间越晚,答案肯定更优。

最后收集答案就枚举每个状态,看这个状态的延续时间是否大于 \(L\), 如果大于就把这个状态看电影的个数和答案取个 \(min\)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,k,ans = 2147483647;
int t[55],num[55],movie[55][1010],f[2097152];
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
int lower__bound(int now,int k)
{
int L = 1, R = num[now], res = -1;
while(L <= R)
{
int mid = (L + R)>>1;
if(movie[now][mid] <= k)
{
res = mid;
L = mid + 1;
}
else R = mid - 1;
}
return res;
}
int main()
{
n = read(); k = read();
for(int i = 1; i <= n; i++)
{
t[i] = read(); num[i] = read();
for(int j = 1; j <= num[i]; j++)
{
movie[i][j] = read();
}
}
for(int i = 1; i < (1<<n); i++)
{
for(int j = 1; j <= n; j++)
{
if(i & (1<<(j-1)))
{
int id = lower__bound(j,f[i ^ (1<<(j-1))]);//找第一个大于 k 的数
if(id != -1)
{
f[i] = max(f[i], movie[j][id] + t[j]);
}
}
}
}
for(int i = 1; i < (1<<n); i++)
{
if(f[i] >= k)
{ int cnt = 0, x = i;
while(x)
{
cnt += x&1;
x >>= 1;
}
ans = min(ans,cnt);
}
}
if(ans == 2147483647) printf("%d\n",-1);
else printf("%d\n",ans);
return 0;
}

P3118 [USACO15JAN]Moovie Mooving G的更多相关文章

  1. [USACO15JAN]Moovie Mooving G

    [USACO15JAN]Moovie Mooving G 状压难题.不过也好理解. 首先我们根据题意: she does not want to ever visit the same movie t ...

  2. Luogu3118:[USACO15JAN]Moovie Mooving

    题面 传送门 Sol 设\(f[S]\)表示看过的电影集合为\(S\),当前电影的最大结束时间 枚举电影和电影的开始时间转移 可以对开始时间\(sort\) 二分一下转移即可 # include &l ...

  3. [USACO15JAN]电影移动Moovie Mooving

    [USACO15JAN]电影移动Moovie Mooving 时间限制: 2 Sec  内存限制: 128 MB 题目描述 Bessie is out at the movies. Being mis ...

  4. P3119 [USACO15JAN]Grass Cownoisseur G

    P3119 [USACO15JAN]Grass Cownoisseur G tarjan缩点+分层图上跑 spfa最长路 约翰有 \(n\) 块草场,编号 \(1\) 到 \(n\),这些草场由若干条 ...

  5. [bzoj3886] [USACO15JAN]电影移动Moovie Mooving

    题目链接 状压\(dp\). 注意到\(n\leq 20\)且每个只能用一次,所以很显然可以压缩每部电影看过没,记\(f[sta]\)为状态为\(sta\)时最多可以看多久. 转移时先枚举状态,然后枚 ...

  6. BZOJ3886 : [Usaco2015 Jan]Moovie Mooving

    f[i]表示用i集合内的电影可以达到的最长时间 f[i]向f[i|(1<<j)]更新,此时的时间为第j部电影在f[i]前的最晚上映时间 先排序一遍离散化后用前缀最大值解决 时间复杂度$O( ...

  7. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  8. [Usaco2015 Jan]Moovie Mooving

    Description Bessie is out at the movies. Being mischievous as always, she has decided to hide from F ...

  9. DP测试总结

    T1:三取方格数 题目描述 设有N*N的方格图,我们将其中的某些方格填入正整数,而其他的方格中放入0.某人从图得左上角出发,可以向下走,也可以向右走,直到到达右下角.在走过的路上,他取走了方格中的数. ...

随机推荐

  1. SpringBoot中JPA,返回List排序

    这里简单示例,利用query,根据“createtime”字段,进行 desc 排序,最近日期的数据在最前面. public List<StatusEvent> findAll(Speci ...

  2. 开源流数据公司 StreamNative 推出 Pulsar 云服务,推进企业“流优先”进程

    Apache 顶级项目 Pulsar 背后的开源流数据公司 StreamNative 宣布,推出基于 Apache Pulsar 的云端服务产品--StreamNative Cloud.该产品的发布, ...

  3. Unity 内嵌网页

    uniwebview 官网 http://uniwebview.onevcat.com/reference/class_uni_web_view.html http://uniwebview.onev ...

  4. 【C#】Random类中构造方法、时间种子与随机数序列的关系

    Random类 构造函数 1) Random random = new Random(); // 无参数构造函数使用系统时钟生成其种子值 然而,系统时钟取值范围有限,因此在小规模计算中,可能无法使用不 ...

  5. MPI Maelstrom (Dijstra+atoi函数转换整数)

    BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distribute ...

  6. Java反射(一)

    什么是反射? 在程序的运行过程中,可以动态的创建对象. 反射的基石是什么? 字节码对象是反射的基石.字节码对象:Java类文件通过javac进行编译后生成的xxx.class文件,此文件由jvm加载至 ...

  7. 查看CentOs6.5/7的系统版本号

    在centos6.5上用 [root@msg45 ~]# lsb_release -aLSB Version:    :base-4.0-amd64:base-4.0-noarch:core-4.0- ...

  8. HTML模仿实现京东登录页面

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Java多线程类FutureTask源码阅读以及浅析

    FutureTask是一个具体的实现类,实现了RunnableFuture接口,RunnableFuture分别继承了Runnable和Future接口,因此FutureTask类既可以被线程执行,又 ...

  10. layui表单引入ueditor遇坑记

    1. 错误示例:表单容器是div标签则无法获取ueditor的内容 注:对于普通的表单元素表单容器是div也都能获取 <!DOCTYPE html> <html> <he ...