P3118 [USACO15JAN]Moovie Mooving G

Link

题目描述

Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer John for L (1 <= L <= 100,000,000) minutes, during which time she wants to watch movies continuously. She has N (1 <= N <= 20) movies to choose from, each of which has a certain duration and a set of showtimes during the day. Bessie may enter and exit a movie at any time during one if its showtimes, but she does not want to ever visit the same movie twice, and she cannot switch to another showtime of the same movie that overlaps the current showtime. Help Bessie by determining if it is possible for her to achieve her goal of watching movies continuously from time 0 through time L. If it is, determine the minimum number of movies she needs to see to achieve this goal (Bessie gets confused with plot lines if she watches too many movies).

'

奶牛贝西想连续看L (1 <= L <= 100,000,000)分钟的电影,有 N (1 <= N <= 20) 部电影可供选择,每部电影会在一天的不同

时段放映。

贝西可以在一部电影播放过程中的任何时间进入或退出放映厅。但她不愿意重复看到一部电影,所以每部电影她最多看到

一次。她也不能在看一部电影的过程中,换到另一个正在播放相同电影的放映厅。

请帮贝西计算她能够做到从 0 到 L 分钟连续不断地观看电影,如果能,请计算她最少看几部电影就行了。'

输入

The first line of input contains N and L. The next N lines each describe a movie. They begin with its integer duration, D (1 <= D <= L) and the number of showtimes, C (1 <= C <= 1000). The remaining C integers on the same line are each in the range 0..L, and give the starting time of one of the showings of the movie. Showtimes are distinct, in the range 0..L, and given in increasing order.

输出

A single integer indicating the minimum number of movies that Bessie

needs to see to achieve her goal. If this is impossible output -1

instead.

样例输入

4 100
50 3 15 30 55
40 2 0 65
0 2 20 90
20 1 0

样例输出

3


状态压缩 dp + 二分。

一开始看错题了,以为要看够 \(L\) 分钟,结果写了半天才发现是要从 \(0\) 一直看到 \(L\)

看到 \(n\) 的范围那么小 , \(L\) 的范围那么大,我们可以考虑把 \(L\) 的值压入数组中。

设 $f[s] $ 表示看电影集合为 \(s\) 的时候,看电影能持续到多长时间。

转移时我们可以枚举这个状态所有能看的电影,就会有转移。

f[i] = max(f[i], a[j][t] + t[i]) (i&(1<<j-1) == 1)

\(t\) 是使 \(a[j][t]\) >= f [i ^ (1<<(j-1))] 的数,即播放时间大于不看这部电影的延续的最长时间。

因为下一个电影的合法开始时间越晚,答案肯定更优。

最后收集答案就枚举每个状态,看这个状态的延续时间是否大于 \(L\), 如果大于就把这个状态看电影的个数和答案取个 \(min\)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,k,ans = 2147483647;
int t[55],num[55],movie[55][1010],f[2097152];
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
int lower__bound(int now,int k)
{
int L = 1, R = num[now], res = -1;
while(L <= R)
{
int mid = (L + R)>>1;
if(movie[now][mid] <= k)
{
res = mid;
L = mid + 1;
}
else R = mid - 1;
}
return res;
}
int main()
{
n = read(); k = read();
for(int i = 1; i <= n; i++)
{
t[i] = read(); num[i] = read();
for(int j = 1; j <= num[i]; j++)
{
movie[i][j] = read();
}
}
for(int i = 1; i < (1<<n); i++)
{
for(int j = 1; j <= n; j++)
{
if(i & (1<<(j-1)))
{
int id = lower__bound(j,f[i ^ (1<<(j-1))]);//找第一个大于 k 的数
if(id != -1)
{
f[i] = max(f[i], movie[j][id] + t[j]);
}
}
}
}
for(int i = 1; i < (1<<n); i++)
{
if(f[i] >= k)
{ int cnt = 0, x = i;
while(x)
{
cnt += x&1;
x >>= 1;
}
ans = min(ans,cnt);
}
}
if(ans == 2147483647) printf("%d\n",-1);
else printf("%d\n",ans);
return 0;
}

P3118 [USACO15JAN]Moovie Mooving G的更多相关文章

  1. [USACO15JAN]Moovie Mooving G

    [USACO15JAN]Moovie Mooving G 状压难题.不过也好理解. 首先我们根据题意: she does not want to ever visit the same movie t ...

  2. Luogu3118:[USACO15JAN]Moovie Mooving

    题面 传送门 Sol 设\(f[S]\)表示看过的电影集合为\(S\),当前电影的最大结束时间 枚举电影和电影的开始时间转移 可以对开始时间\(sort\) 二分一下转移即可 # include &l ...

  3. [USACO15JAN]电影移动Moovie Mooving

    [USACO15JAN]电影移动Moovie Mooving 时间限制: 2 Sec  内存限制: 128 MB 题目描述 Bessie is out at the movies. Being mis ...

  4. P3119 [USACO15JAN]Grass Cownoisseur G

    P3119 [USACO15JAN]Grass Cownoisseur G tarjan缩点+分层图上跑 spfa最长路 约翰有 \(n\) 块草场,编号 \(1\) 到 \(n\),这些草场由若干条 ...

  5. [bzoj3886] [USACO15JAN]电影移动Moovie Mooving

    题目链接 状压\(dp\). 注意到\(n\leq 20\)且每个只能用一次,所以很显然可以压缩每部电影看过没,记\(f[sta]\)为状态为\(sta\)时最多可以看多久. 转移时先枚举状态,然后枚 ...

  6. BZOJ3886 : [Usaco2015 Jan]Moovie Mooving

    f[i]表示用i集合内的电影可以达到的最长时间 f[i]向f[i|(1<<j)]更新,此时的时间为第j部电影在f[i]前的最晚上映时间 先排序一遍离散化后用前缀最大值解决 时间复杂度$O( ...

  7. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  8. [Usaco2015 Jan]Moovie Mooving

    Description Bessie is out at the movies. Being mischievous as always, she has decided to hide from F ...

  9. DP测试总结

    T1:三取方格数 题目描述 设有N*N的方格图,我们将其中的某些方格填入正整数,而其他的方格中放入0.某人从图得左上角出发,可以向下走,也可以向右走,直到到达右下角.在走过的路上,他取走了方格中的数. ...

随机推荐

  1. 解决 SQL 注入和 XSS 攻击(Node.js 项目中)

    1.SQL 注入 SQL 注入,一般是通过把 SQL 命令插入到 Web 表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的 SQL 命令. SQL 注入示例 在登录界面,后端会根 ...

  2. Android开发之数据存储——SharedPreferences基础知识详解,饿补学会基本知识,开发者必会它的用法。

    一.数据存储选项:Data Storage --Storage Options[重点] 1.Shared Preferences Store private primitive data in key ...

  3. 关于SpringBoot集成JDBCTemplate的RowMapper问题

    JdbcTemplate 是Spring提供的一套JDBC模板框架,利用AOP 技术来解决直接使用JDBC时大量重复代码的问题.JdbcTemplate虽然没有MyBatis 那么灵活,但是直接使用J ...

  4. 05 element.ui 全局配置

    element.ui css样式在组件里面改有的不会生效,是因为加了scoped.局部作用,放在这里是全局配置  

  5. docker部署code-server实现在线开发

    1.前言 本文记录了通过docker.docker-compose部署code-server.mysql,搭建在线开发环境的过程,综合体验很爽,适合小规模开发团队使用. 安装环境: vmware hy ...

  6. springboot +jsp项目打包部署到华为云服务器

    注:打包之前先保证你的项目本地运行没问题. 一.打包 打包有两种方式,打成jar包和打成war包.因为springboot有内置的服务器,所以选择打成jar包,这样云服务器就不用装tomcat了. 打 ...

  7. Java多线程--两个线程同时对一个人的年龄进行增加和修改

    public class Thread_A extends Thread { Human human; public Thread_A(String name, Human human) { supe ...

  8. oldboy edu python full stack s22 day16 模块 random time datetime os sys hashlib collections

    今日内容笔记和代码: https://github.com/libo-sober/LearnPython/tree/master/day13 昨日内容回顾 自定义模块 模块的两种执行方式 __name ...

  9. [程序员代码面试指南]二叉树问题-判断t1树是否包含t2树的全部拓扑结构、[LeetCode]572. 另一个树的子树

    题目1 解 先序遍历树1,判断树1以每个节点为根的子树是否包含树2的拓扑结构. 时间复杂度:O(M*N) 注意区分判断总体包含关系.和判断子树是否包含树2的函数. 代码 public class Ma ...

  10. hystrix总结之多返回值命令

    继承HystrixCommand实现run方法的命令只能返回单一值,Hystrix也提供了方式可以让我返回一个Observable结果,然后持续监听运行结果. 继承HystrixObservableC ...