前言:抽时间做了做这道题,把学长送退役的题。

-----------------

题目链接

题目大意:定义$()$是合法括号串。如果$A,B$是合法括号串,那么$(AB),AB$为合法括号串。现给定根节点为$1$的一棵树,每个节点有一个括号。定义$s_i$是从根节点到$i$结点的括号串,$k_i$是$s_i$的合法子串,求$1*k_1 \ xor \ 2*k_2 \ xor \cdots \ n*k_n$。

这道题其实实现起来并不难,重要的是思维。我也是想了快一个小时才推出来式子QAQ。

可以发现,合法的括号串模型,无非就三种:

1.$combo$式:$()()()\cdots ()$

2.套娃式:$(((((\cdots )))))$

3.混合式:$((()()\cdots ()()))$

很明显,对于$combo$式,如果末尾再添加一个合法括号串,那么对答案肯定又有很多贡献。我们先来简单推一推式子:

假设先前有$n-1$个连续的合法括号串,现在在末尾添加了一个。

先前的答案:$(n-1)+\frac{(n-1)*(n-2)}{2}=\frac{n*(n-1)}{2}$

现在的答案:$n+\frac{n*(n-1)}{2}=\frac{n*(n+1)}{2}$

答案增加了$n$。

这对我们来说是个好消息,因为我们只要记录一下先前连续的合法括号串有多少个,就可以$O(1)$求出现在的答案。

答案是不是开始浮出水面了?

对于套娃和混合式,我们把它当作一个合法括号串,它们里面的答案由先前的递推来解决。

设$sum[i]$表示考虑前$i$个括号其合法的子串数量,$c[i]$表示截止到$i$为止连续的合法括号串数量。如果遇到$($,我们就让它入栈,遇到$)$就统计答案,有递推式:

$sum[now]=sum[fa[now]]+c[fa[st[tot]]]+1,c[now]=c[fa[st[tot]]]+1,tot--$

这样写对于序列没有任何问题,但是遇到树形结构就萎了:树是递归遍历的,用栈来维护可能会改变先前的括号顺序。所以我们要用链表来维护左括号序列。

剩下的就没有什么难的了。注意一些小细节:开long long,注意链表已经是否到头,等等。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=;
int fa[maxn],last[maxn*],c[maxn],sum[maxn],head[maxn],n,tot,cnt,ans;
char ch[maxn];
struct node
{
int next,to;
}edge[maxn];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline void dfs(int now)
{
sum[now]=sum[fa[now]];
if (ch[now]==')'){
if (last[now]) c[now]=c[last[now]]+,sum[now]+=c[now];
last[now]=last[last[now]];
}
ans^=now*sum[now];
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (ch[now]=='(') last[to]=now;
else last[to]=last[now];
if (ch[now]==')'&&ch[to]=='(') c[to]=c[now];
dfs(to);
}
}
signed main()
{
n=read();
for (int i=;i<=n;i++) scanf("%c",&ch[i]);
for (int i=;i<=n;i++)
{
int x=read();
fa[i]=x;add(x,i);
}
dfs();
cout<<ans;
return ;
}

【CSP2019】括号树 题解(递推+链表)的更多相关文章

  1. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  2. CSP2019 括号树

    Description: 给定括号树,每个节点都是 ( 或 ) ,定义节点的权值为根到该节点的简单路径所构成的括号序列中不同合法子串的个数(子串需要连续,子串所在的位置不同即为不同.)与节点编号的乘积 ...

  3. 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解

    前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...

  4. 洛谷 P5658 括号树 题解

    原题链接 简要题意: 求出以从每个节点到根形成的括号序列的合法对数. 算法一 观察到 \(n \leq 8\) ,所以我们可以用 纯粹的暴力 . 用 \(O(n)\) 时间得出当前节点到根的字符串. ...

  5. [CSP-S2019]括号树 题解

    CSP-S2 2019 D1T2 刚开考的时候先大概浏览了一遍题目,闻到一股浓浓的stack气息 调了差不多1h才调完,加上T1用了1.5h+ 然而T3还是没写出来,滚粗 思路分析 很容易想到的常规操 ...

  6. P5658 括号树

    P5658 括号树 题解 太菜了啥都不会写只能水5分数据 啥都不会写只能翻题解  题解大大我错了 我们手动找一下规律 我们设 w[ i ] 为从根节点到结点 i 对答案的贡献,也就是走到结点 i ,合 ...

  7. HDU 4747 Mex 递推/线段树

    题目链接: acm.hdu.edu.cn/showproblem.php?pid=4747 Mex Time Limit: 15000/5000 MS (Java/Others)Memory Limi ...

  8. BZOJ5017 [Snoi2017]炸弹[线段树优化建边+scc缩点+DAG上DP/线性递推]

    方法一: 朴素思路:果断建图,每次二分出一个区间然后要向这个区间每个点连有向边,然后一个环的话是可以互相引爆的,缩点之后就是一个DAG,求每个点出发有多少可达点. 然后注意两个问题: 上述建边显然$n ...

  9. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

随机推荐

  1. 隐写术工具之binwalk

    0x00Binwalk介绍 Binwalk是用于搜索给定二进制镜像文件以获取嵌入的文件和代码的工具. 具体来说,它被设计用于识别嵌入固件镜像内的文件和代码. Binwalk使用libmagic库,因此 ...

  2. C#获取页面内容的几种方式

    常见的Web页面获取页面内容用 WebRequest 或者 HttpWebRequest 来操作 Http 请求. 例如,获取百度网站的 html 页面 var request = WebReques ...

  3. day40 作业

    利用线程和进程实现tcp 服务端 from multiprocessing import Process from threading import Thread import socket def ...

  4. Flask-Limit使用详细说明

    Flask-Limit详细说明 在flask项目中我们需要对全部或者一部分接口进行限制,又不想造轮子,那怎么办呢? 所以这就是flask-limit出现的原因,不过对于相对复杂的需求,还是自己造轮子吧 ...

  5. Python 实现邮件发送功能(初级)

    在我们日常项目中,会经常使用到邮件的发送功能,如何利用Python发送邮件也是一项必备的技能.本文主要讲述利用Python来发送邮件的一些基本操作. 本章主要包含知识点: 邮件发送原理简述即常用smt ...

  6. LeetCode第4题:寻找两个有序数组的中位数

    double Solution::findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) ...

  7. 关于JS深拷贝和浅拷贝

    最近在前端开发中遇到一些问题,就是数组中的某个对象或某个对象的值改变之后,在不刷新页面的时候需要重新渲染值时,页面显示的还是原来的数据.比如: data{ A:[{id:1,num:1},{id:2, ...

  8. log4j系统日志(转载)

    地址:http://www.codeceo.com/log4j-usage.html 日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在a ...

  9. Python Ethical Hacking - BACKDOORS(2)

    Refactoring - Creating a Listener Class #!/usr/bin/env python import socket class Listener: def __in ...

  10. T3 成绩单 题解

    这个题本来不归我讲,但我A完之后觉得太坑了,还是讲一下吧. 首先这个题有个重要的地方:(字典顺序,学号全为小写字母,从小到大排列) 字典序和字典顺序是不一样的!!! 我以为是字典序……,wa了,字典顺 ...