import pandas as pd
import numpy as np
food_info = pd.read_csv('food_info.csv')
1.处理缺失值(可使用平均数,众数填充)
查看非缺失值的数据:
price_is_null = pd.isnull(food_info["Price"])
price = food_info["Price"][price_is_null==False]
使用 fillna 填充
food_info['Price'].fillna(food_info['Price'].mean(),inplace = True)
2.求平均值
food_info["Price"].mean()
3.查看每一个 index 级,values 的平均值
food_info.pivot(index = "",values = "",aggfunc = np.mean)
4.查看总人数
food_info.pivot(index = "",values = ["",""],aggfunc = np.sum)
5.丢弃缺失值
dropna_columns = food_info.dropna(axis = 1)
将 Price 和 Time 列存在 NaN 的行去掉
new_food_info = food_info.dropna(axis = 0,subset = ["Price","Time"])
6.定位具体值到 83
row_index_83_price = food_info.loc[83,"Price"]
7.进行排序(sort_values 默认升序)
new_food_info.sort_values("Price")
8.将索引值重新排序,使用 reset_index
new_food_info.reset_index(drop = True)
9.使用 apply 函数
new_food_info.apply(函数名)
10.查看缺失值的个数
def not_null_count(column):
column_null = pd.isnull(column)
# column_null 为空的布尔类型
null = column[column_null]
# 将为空值的列表传递给 null
return len(null)
column_null_count = food_info.apply(not_null_count)
11.划分等级:年龄 成绩
def which_class(row):
pclass = row["Pclass"]
if pd.isnull(pclass):
return "未知等级"
elif pclass == 1:
return "第一级"
elif pclass == 2:
return "第二级"
elif pclass == 3:
return "第三级"
new_food_info.apply(which_class,axis = 1)
12.使用 pivot_table 展示透视表
new_food_info.pivot_table(index = " ",values=" ")

2020-04-11

Pandas 复习2的更多相关文章

  1. Pandas 复习

    1.导包 import pandas as pd 2.数据读取,文件在该代码文件夹内 food_info = pd.read_csv('food_info.csv') 3.查看类型 food_info ...

  2. 巩固复习(Hany驿站原创)_python的礼物

    Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https://www ...

  3. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  4. Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识

    第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...

  5. python基础复习

    复习-基础 一.review-base 其他语言吗和python的对比 c vs Python c语言是python的底层实现,解释器就是由python编写的. c语言开发的程序执行效率高,开发现率低 ...

  6. 18-11-01 pandas 学习03

    [python]pandas display选项 import pandas as pd 1.pd.set_option('expand_frame_repr', False) True就是可以换行显 ...

  7. 五、Pandas玩转数据

    Series的简单运算 import numpy as np import pandas as pd s1=pd.Series([1,2,3],index=['A','B','C']) print(s ...

  8. 巩固复习(Django最基础的部分_具体查看官方文档)

    Django学习路1 1.脚本不能随便运行,没准 linux 运行完就上不去了 2.pip 在 linux 上 写 pip3 同理 python 写为 python3 3.在 pycharm 上安装库 ...

  9. 被 Pandas read_csv 坑了

    被 Pandas read_csv 坑了 -- 不怕前路坎坷,只怕从一开始就走错了方向 Pandas 是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的 ...

随机推荐

  1. js的几个小问题

    1.存一个有效期为7天的cookie,key = nickname, val = Ace 代码: function setCookie(key,val,expires){ let now=new Da ...

  2. Python3笔记001 - 1.1 python概述

    第1章 认识python python语言特点 跨平台 开源的 解释型 面向对象 python语言的特点是:以对象为核心组织代码,支持多种编程范式,采用动态类型,自动进行内存回收,并能调用C语言库进行 ...

  3. Quartz.Net 任务调度

    基于ASP.NET MVC(C#)和Quartz.Net组件实现的定时执行任务调度 在之前的文章<推荐一个简单.轻量.功能非常强大的C#/ASP.NET定时任务执行管理器组件–FluentSch ...

  4. MVC引用asp.net报表(测试小例子)

    public class Default1Controller : Controller { // // GET: /Default1/ public ActionResult Index() { r ...

  5. mysql修改密码的三种方式

  6. Linux 进程必知必会

    上一篇文章只是简单的描述了一下 Linux 基本概念,通过几个例子来说明 Linux 基本应用程序,然后以 Linux 基本内核构造来结尾.那么本篇文章我们就深入理解一下 Linux 内核来理解 Li ...

  7. CMDB04 /流程梳理、cmdb总结

    CMDB04 /流程梳理.cmdb总结 目录 CMDB04 /流程梳理.cmdb总结 1. 流程梳理 1.1 环境 1.2 远程连接服务器 1.3 向服务器上传文件 1.4 运维管理服务器 2. cm ...

  8. 文件上传漏洞fuzz字典生成脚本小工具分享

    前言 学习xss的时候翻阅资料发现了一个文件上传漏洞fuzz字典生成脚本小工具,试了试还不错,分享一下 配置 需要python2环境 工具地址:https://github.com/c0ny1/upl ...

  9. Dynamics CRM Audit Performance Troubleshooting

    记一次Dynamics CRM Audit 查询失败的问题. 客户环境现象:由于业务逻辑需要使用RetrieveAuditDetailRequest API查询相关Record的详细更改信息.但查询过 ...

  10. 008.Nginx静态资源

    一 Nginx静态资源概述 1.1 静态资源类型 Nginx作为静态资源Web服务器部署配置, 传输非常高效, 常常用于静态资源处理,请求以及动静分离.通常非服务器动态运行生成的文件属于静态资源. 类 ...