import pandas as pd
import numpy as np
food_info = pd.read_csv('food_info.csv')
1.处理缺失值(可使用平均数,众数填充)
查看非缺失值的数据:
price_is_null = pd.isnull(food_info["Price"])
price = food_info["Price"][price_is_null==False]
使用 fillna 填充
food_info['Price'].fillna(food_info['Price'].mean(),inplace = True)
2.求平均值
food_info["Price"].mean()
3.查看每一个 index 级,values 的平均值
food_info.pivot(index = "",values = "",aggfunc = np.mean)
4.查看总人数
food_info.pivot(index = "",values = ["",""],aggfunc = np.sum)
5.丢弃缺失值
dropna_columns = food_info.dropna(axis = 1)
将 Price 和 Time 列存在 NaN 的行去掉
new_food_info = food_info.dropna(axis = 0,subset = ["Price","Time"])
6.定位具体值到 83
row_index_83_price = food_info.loc[83,"Price"]
7.进行排序(sort_values 默认升序)
new_food_info.sort_values("Price")
8.将索引值重新排序,使用 reset_index
new_food_info.reset_index(drop = True)
9.使用 apply 函数
new_food_info.apply(函数名)
10.查看缺失值的个数
def not_null_count(column):
column_null = pd.isnull(column)
# column_null 为空的布尔类型
null = column[column_null]
# 将为空值的列表传递给 null
return len(null)
column_null_count = food_info.apply(not_null_count)
11.划分等级:年龄 成绩
def which_class(row):
pclass = row["Pclass"]
if pd.isnull(pclass):
return "未知等级"
elif pclass == 1:
return "第一级"
elif pclass == 2:
return "第二级"
elif pclass == 3:
return "第三级"
new_food_info.apply(which_class,axis = 1)
12.使用 pivot_table 展示透视表
new_food_info.pivot_table(index = " ",values=" ")

2020-04-11

Pandas 复习2的更多相关文章

  1. Pandas 复习

    1.导包 import pandas as pd 2.数据读取,文件在该代码文件夹内 food_info = pd.read_csv('food_info.csv') 3.查看类型 food_info ...

  2. 巩固复习(Hany驿站原创)_python的礼物

    Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https://www ...

  3. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  4. Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识

    第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...

  5. python基础复习

    复习-基础 一.review-base 其他语言吗和python的对比 c vs Python c语言是python的底层实现,解释器就是由python编写的. c语言开发的程序执行效率高,开发现率低 ...

  6. 18-11-01 pandas 学习03

    [python]pandas display选项 import pandas as pd 1.pd.set_option('expand_frame_repr', False) True就是可以换行显 ...

  7. 五、Pandas玩转数据

    Series的简单运算 import numpy as np import pandas as pd s1=pd.Series([1,2,3],index=['A','B','C']) print(s ...

  8. 巩固复习(Django最基础的部分_具体查看官方文档)

    Django学习路1 1.脚本不能随便运行,没准 linux 运行完就上不去了 2.pip 在 linux 上 写 pip3 同理 python 写为 python3 3.在 pycharm 上安装库 ...

  9. 被 Pandas read_csv 坑了

    被 Pandas read_csv 坑了 -- 不怕前路坎坷,只怕从一开始就走错了方向 Pandas 是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的 ...

随机推荐

  1. 04 . kubernetes资源清单YAML入门

    YAML 通过k8s操作yaml配置文件在node上创建资源,yaml配置文件就像船垛,用来操控docker这艘大船 yam是专门用来写配置文件的语言,非常简洁和强大.而实际上使用yaml配置文件创建 ...

  2. hive中left semi join 与join 的区别

    LEFT SEMI JOIN:左半开连接会返回左边表的记录,前提是其记录对于右边表满足ON语句中的判定条件.对于常见的内连接(INNER JOIN),这是一个特殊的,优化了的情况.大多数的SQL方言会 ...

  3. 恕我直言你可能真的不会java第11篇-Stream API终端操作

    一.Java Stream管道数据处理操作 在本号之前写过的文章中,曾经给大家介绍过 Java Stream管道流是用于简化集合类元素处理的java API.在使用的过程中分为三个阶段.在开始本文之前 ...

  4. TCP/IP通信网络基础

    TCP/IP是互联网相关的各类协议族的总称. TCP/IP的分层管理 分层的优点:如果只有一个协议在互联网上统筹,某个地方修改就要把所有的部分整体换掉,采用分层则只需要改变相应的层.把各个接口部分规划 ...

  5. Plink v0.1.0 发布——基于Flink的流处理平台

    Plink是一个基于Flink的流处理平台,旨在基于 [Apache Flink]封装构建上层平台. 提供常见的作业管理功能.如作业的创建,删除,编辑,更新,保存,启动,停止,重启,管理,多作业模板配 ...

  6. HTML5全局属性汇总

    局部属性和全局属性 局部属性:有些元素能规定自己的属性,这种属性称为局部属性.比如link元素,它具有的局部属性有href. rel. hreflang. media. type. sizes这六个. ...

  7. POJ 3263 Tallest Cow 题解

    题目 FJ's \(N (1 ≤ N ≤ 10,000)\) cows conveniently indexed 1..N are standing in a line. Each cow has a ...

  8. centos7-网络以及网卡配置

    注:centos6.8配置的话直接命令行输入setup配置 1.配置文件目录: /etc/sysconfig/network-scripts/ifcfg-ens33 2.配置文件内容: centos7 ...

  9. LeetCode 84 | 单调栈解决最大矩形问题

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第52篇文章,我们一起来看LeetCode第84题,Largest Rectangle in Histogram( ...

  10. CCNA - Part7:网络层 - ICMP 应该是你最熟悉的协议了

    ICMP 协议 在之前网络层的介绍中,我们知道 IP 提供一种无连接的.尽力而为的服务.这就意味着无法进行流量控制与差错控制.因此在 IP 数据报的传输过程中,出现各种的错误是在所难免的,为了通知源主 ...