SPOJ REPEATS 后缀数组
题目链接:http://www.spoj.com/problems/REPEATS/en/
题意:首先定义了一个字符串的重复度。即一个字符串由一个子串重复k次构成。那么最大的k即是该字符串的重复度。现在给定一个长度为n的字符串,求最大重复次数。
思路:根据<<后缀数组——处理字符串的有力工具>>的思路,先穷举长度L,然后求长度为L 的子串最多能连续出现几次。首先连续出现1 次是肯定可以的,所以这里只考虑至少2 次的情况。假设在原字符串中连续出现2 次,记这个子字符串为S,那么S 肯定包括了字符r[0], r[L], r[L*2],r[L*3], ……中的某相邻的两个。所以只须看字符r[L*i]和r[L*(i+1)]往前和往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1 次。最后看最大值是多少。

这里说下我对这个思路的理解,首先枚举长度L没什么好说,然后假设位置i属于答案字符子串最前段内,那么考虑答案是重复2次以上,那么位置i一定和位置i+L匹配,如果往后匹配的最长公共前缀为Len,那么以i为起点长度为Len的子串重复了Len/L+1次,但是这只是i为起点的情况,考虑i不为起点的情况,如果Len不是L的倍数,说明Len%L的部分是多余的部分,该部分不足够让子串再重复一次,所以我们可以考虑从i和i+L往前匹配,如果可以匹配[pre=L-(Len%L)]个字符,那么就可以再多重复一次,相当于答案字符的起点是i-pre,重复次数为(Len/L+1)+1,后面的+1相当于之前多余的字符和i往前匹配凑足了一次重复次数。那么就可以再判断位置i-pre和i+L-pre的最长公共前缀是否大于等于需要凑足的字符(pre),或者往前直接暴力匹配是否能匹配够pre。可能会问为什么只需要往前匹配pre个字符就可以判断了,而不是往前匹配更远那答案不是更优了吗?,假如i和i+L往前可以匹配pre+K*L个字符,那么该答案肯定在i枚举到i-K*L就被计算过了,所以只需匹配前pre个字符就可以了。对于求某两个位置的最长公共前缀和用后缀数组的height用RMQ预处理出来,然后就可以O(1)查询了。
穷举长度L 的时间是n,每次计算的时间是n/L。所以整个做法的时间复杂度是O(n/1+n/2+n/3+……+n/n)=O(nlogn)。
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
#include<time.h>
#include<cmath>
using namespace std;
typedef long long int LL;
const int MAXN = + ;
int cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a + l] == r[b + l];
}
int wa[MAXN], wb[MAXN], wv[MAXN], WS[MAXN];
void da(int *r, int *sa, int n, int m){
int i, j, p, *x = wa, *y = wb, *t;
for (i = ; i < m; i++) { WS[i] = ; }
for (i = ; i < n; i++) { WS[x[i] = r[i]]++; }
for (i = ; i < m; i++) { WS[i] += WS[i - ]; }
for (i = n - ; i >= ; i--) { sa[--WS[x[i]]] = i; }
for (j = , p = ; p<n; j *= , m = p)
{
for (p = , i = n - j; i < n; i++) { y[p++] = i; }
for (i = ; i < n; i++) {
if (sa[i] >= j){ y[p++] = sa[i] - j; }
}
for (i = ; i < n; i++) { wv[i] = x[y[i]]; }
for (i = ; i < m; i++) { WS[i] = ; }
for (i = ; i < n; i++) { WS[wv[i]]++; }
for (i = ; i < m; i++) { WS[i] += WS[i - ]; }
for (i = n - ; i >= ; i--) { sa[--WS[wv[i]]] = y[i]; }
for (t = x, x = y, y = t, p = , x[sa[]] = , i = ; i < n; i++){
x[sa[i]] = cmp(y, sa[i - ], sa[i], j) ? p - : p++;
}
}
return;
}
int Rank[MAXN], height[MAXN],sa[MAXN];
void calheight(int *r, int *sa, int n){
int i, j, k = ;
for (i = ; i <= n; i++) { Rank[sa[i]] = i; }
for (i = ; i < n; height[Rank[i++]] = k){
for (k ? k-- : , j = sa[Rank[i] - ]; r[i + k] == r[j + k]; k++);
}
return;
}
int RMQ[MAXN],mm[MAXN],best[][MAXN];
void initRMQ(int n){
int i, j, a, b;
for (mm[] = -, i = ; i <= n; i++)
mm[i] = ((i&(i - )) == ) ? mm[i - ] + : mm[i - ];
for (i = ; i <= n; i++) best[][i] = i;
for (i = ; i <= mm[n]; i++)
for (j = ; j <= n + - ( << i); j++)
{
a = best[i - ][j];
b = best[i - ][j + ( << (i - ))];
if (RMQ[a]<RMQ[b]) best[i][j] = a;
else best[i][j] = b;
}
return;
}
int askRMQ(int a, int b){
int t;
t = mm[b - a + ]; b -= ( << t) - ;
a = best[t][a]; b = best[t][b];
return RMQ[a]<RMQ[b] ? a : b;
}
int lcp(int a, int b){
int t;
a = Rank[a]; b = Rank[b];
if (a>b) { t = a; a = b; b = t; }
return(height[askRMQ(a + , b)]);
}
int r[MAXN], t, len;
char str;
void solve(){
int ans=;
for (int L = ; L <= len; L++){
for (int i = ; i + L<len; i += L){
int lcpLen = lcp(i, i + L); //i和i+L的最长公共前缀
int tmp = lcpLen / L + ; //此时重复次数
int sur = (L - lcpLen%L); //剩余可以往前匹配的个数
int prei = i - sur; //往前匹配的位置
if (prei >= && prei + L < len&&lcp(prei,prei+L)>=L){
tmp++; //不越界并且最长公共前缀大于L或者说大于剩余需要的个数即可
}
ans = max(ans, tmp);
}
}
printf("%d\n", ans);
}
int main(){
//#ifdef kirito
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
//#endif
// int start = clock();
scanf("%d", &t);
while (t--){
scanf("%d\n", &len);
for (int i = ; i < len; i++){
scanf("%c\n", &str);
r[i] = str-'a'+;
}
r[len] = ;
da(r, sa, len+, ); //因为题目输入只有'a'和'b',所以字符最大为3
calheight(r, sa, len);
for (int i = ; i <= len; i++){ RMQ[i] = height[i]; }//初始化化RMQ
initRMQ(len);//计算RMQ
solve();
}
//#ifdef LOCAL_TIME
// cout << "[Finished in " << clock() - start << " ms]" << endl;
//#endif
return ;
}
SPOJ REPEATS 后缀数组的更多相关文章
- SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串
题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags A string s is called an (k,l ...
- SPOJ - REPEATS Repeats (后缀数组)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- SPOJ PHRASES 后缀数组
题目链接:http://www.spoj.com/problems/PHRASES/en/ 题意:给定n个字符串,求一个最长的子串至少在每个串中的不重叠出现次数都不小于2.输出满足条件的最长子串长度 ...
- SPOJ SUBST1 后缀数组
题目链接:http://www.spoj.com/problems/SUBST1/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字符串 ...
- SPOJ DISUBSTR 后缀数组
题目链接:http://www.spoj.com/problems/DISUBSTR/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字 ...
- Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)
Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...
- spoj687 REPEATS - Repeats (后缀数组+rmq)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- SPOJ DISUBSTR ——后缀数组
[题目分析] 后缀数组模板题. 由于height数组存在RMQ的性质. 那么对于一个后缀,与前面相同的串总共有h[i]+sa[i]个.然后求和即可. [代码](模板来自Claris,这个板子太漂亮了) ...
- [spoj DISUBSTR]后缀数组统计不同子串个数
题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...
随机推荐
- windows下ftp命令大全
FTP Server: home4u.at.china.com User: yepanghuang Password: abc123 打开Windows的开始菜单,执行“运行”命令,在对话框中输入ft ...
- EF查询视图只得到一条记录
1.出错结果:数据库表视图有多条数据,在使用EF框架进行查询时却只得到一条数据(注:拦截EF得到的sql语句在数据库进行查询并没有任务问题). 2.出错原因:该视图中没有ID或者主键,EF查询时进行反 ...
- 【elasticsearch】python下的使用
有用链接: 最有用的:http://es.xiaoleilu.com/054_Query_DSL/70_Important_clauses.html 不错的博客:http://www.cnblogs. ...
- 使用rdesktop连接Windows远程桌面
rdesktop 使用简单,windows也不和装什么服务端,是要把远程桌面共享打开就行了 安装 yum -y install rdesktop 具体使用方法要先打开终端,然后输入以下命令: rdes ...
- IOS - 键盘处理
iOS 发布了很多关于屏幕上键盘的通知.下面列出了这些通知的简要解释: UIKeyboardWillShowNotification 当键盘即将要显示的时候将会发出这个通知.这个通知包含了用户信息库, ...
- iOS-运行时机制
这里的两篇运行时的文章感觉还不错. 收藏: 初识iOS运行时RunTime | // TODO: http://www.saitjr.com/ios/objc-runtime.html Objecti ...
- Python--常见问题解决方案
1.如何支持中文,在第一行加上编码格式的支持: # coding=gbk +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- poj2236(并查集)
题目链接: http://poj.org/problem?id=2236 题意: 有n台计算机, 已知每台计算机的坐标, 初始时所有计算机都是坏的, 然后修复其中一些计算机, 已修复的计算机距离不超过 ...
- 二、JavaScript语言--事件处理--DOM事件探秘--下拉菜单
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- mysql的事务处理
事务用于保证数据的一致性,它由一组相关的DML语句组成,该组的DML语句要么全部成功,要么全部失败. 示例: 银行账单 $mysqli=new mysqli("localhost" ...