Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

Sample Input

3 10000

Sample Output

9

HINT

2≤n≤500

0<p≤1000000000
 
题解:
两人拥有的寿司美味度的质因子数不能有重复,对于小于√500的质因子将其在G手中、在W手中、不在两人手中压缩成3进制状态j,用dp[j]储存方案数。
先预处理好美味度为小于√500的质数的寿司归属,在枚举其他寿司插入。
插入一个大于√500的质数寿司P时,同时考虑其倍数。新开一个数组dp2[0~2,j]表示该质因子不在二人手中、在G手中、在W手中时,状态为j的方案数
将P的倍数寿司插入,假设其为KP,通过三个数组转移。
注意转移时该质因子归属、小于√500质因子归属的变化(若K的某个质因子p已在对方手中,则不可拥有;若两人都不拥有,则可以拥有这个寿司,并更新状态;若p质因子已在自己手中,则可以拥有这个寿司)
转移方向:0——>1、2;   1——>1;   2——>2
用所有P的倍数插入并转移后,将dp2[1~2]数组转到dp数组中。
插入质因子都在√500以内的合数寿司时,用类似方法在DP数组中转移。
最后统计答案。
 
代码:
 uses math;
const
zs:array[..]of longint=(,,,,,,,);
var
i,ii,j,jj,k,l,fl,n:longint;
a:array[..]of int64;
b:array[..]of int64;
dp:array[..]of int64;
dp2:array[..,..]of int64;
ans,tj,mo:int64;
begin
readln(n,mo);
b[]:=; for i:= to do b[i]:=b[i-]*;
for i:= to b[]- do dp[i]:=;
for i:= to n do
if a[i]= then
begin
j:=i*;
while j<=n do
begin
if i> then a[j]:= else a[j]:=max(a[j],);
j:=j+i;
end;
if i> then
begin
for j:= to b[]- do
begin
dp2[,j]:=dp[j]; dp2[,j]:=; dp2[,j]:=;
end;
ii:=i; k:=;
while ii<=n do
begin
for jj:= to do
for j:=b[]- downto do
if dp2[jj,j]> then
begin
tj:=j; fl:=;
for l:= to do
if k mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp2[jj,tj]:=(dp2[jj,tj]+dp2[jj,j])mod mo;
end;
for j:=b[]- downto do
begin
for jj:= to do
begin
tj:=j; fl:=;
for l:= to do
if k mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp2[jj,tj]:=(dp2[jj,tj]+dp2[,j])mod mo;
end;
end;
ii:=ii+i; inc(k);
end;
for j:= to b[]- do dp[j]:=(dp[j]+dp2[,j]+dp2[,j])mod mo;
end;
end else
if a[i]= then
begin
for j:=b[]- downto do
begin
for jj:= to do
begin
tj:=j; fl:=;
for l:= to do
if i mod zs[l]= then
begin
if (tj div b[l-])mod =-jj then
begin fl:=; break; end else
tj:=tj+(jj-(tj div b[l-])mod )*b[l-];
end;
if fl= then dp[tj]:=(dp[tj]+dp[j])mod mo;
end;
end;
end;
for i:= to b[]- do
begin
fl:=;
for l:= to do
if(zs[l]>n)and((i div b[l-])mod <>)then
begin fl:=; break; end;
if fl= then ans:=(ans+dp[i])mod mo;
end;
writeln(ans);
end.

BZOJ4197[NOI2005]寿司晚宴的更多相关文章

  1. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  2. 【BZOJ-4197】寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  3. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  4. [NOI2005]寿司晚宴

    题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴.小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿司,编号1,2,3,⋯,n-1 ...

  5. BZOJ4197 [Noi2015]寿司晚宴 【状压dp】

    题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...

  6. bzoj4197 [Noi2015]寿司晚宴——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...

  7. 【BZOJ4197】【NOI2015】寿司晚宴(动态规划)

    [BZOJ4197][NOI2015]寿司晚宴(动态规划) 题面 BZOJ 从\([2,n]\)中选择两个集合(可以为空集),使得两个集合中各选一个数出来,都互质. 求方案数. 题解 对于\(500\ ...

  8. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  9. 【BZOJ4197】【Noi2015】寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

随机推荐

  1. 跨越千年的RSA算法

    转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  2. Android 下拉列表框、文本框、菜单

    1.下拉列表框(Spinner) 项目布局 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/andr ...

  3. 使用mac 终端利用alias设置快捷命令

    在终端中输入快捷命令可以提高工作效率,同时可以少记很多命令 如何做: 首先在~/目录下编辑 .bash_profile这个隐藏文件,如果你想直接双击此文件打开编辑的话请在终端输入 Mac 显示隐藏文件 ...

  4. js 判断多个一样的name

    var items = document.getElementsByName("spec_spec_1[]"); alert(items.length); for (i = 0; ...

  5. 通过系统架构漏洞获取系统VIP资源

    首先说我的构思: 一本小说,有很多集,每一集请求下载都会生成一个k的json,例如: 有了这个k我们就可以定位到这一集具体的位置,这本小说是固定的id,每一集的K找到了,剩下的不就简单了. 再通过抓包 ...

  6. Nodejs——包与NPM

    在模块之外,包和NPM则是将模块联系起来的一种机制. CommonJS的包规范由包结构和包描述文件组成. 包实际上是一个存档文件,即一个目录直接打包为.zip或tar.gz格式的文件. 完全符合Com ...

  7. WebMatrix之WebMatrix.Data

    WebMatrix之WebMatrix.Data WebMatrix数据访问系列目次: WebMatrix之数据访问 WebMatrix之WebMatrix.Data WebMatrix之WebMat ...

  8. .net C# 图片转Base64 Base64转图片

    //图片 转为 base64编码的文本 private void button1_Click(object sender, EventArgs e) { OpenFileDialog dlg = ne ...

  9. mapreduce流程中的几个关键点

    MapReduce中数据流动    (1)最简单的过程:  map - reduce    (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partiti ...

  10. MongoDB 常用故障排查工具

    1.profile profiling levels: 0,关闭profile:1,只抓取slow查询:2,抓取所有数据. 启动profile并且设置Profile级别: 可以通过mongo shel ...