Step 1: Basic Python Skills

install Anaconda
including numpy, scikit-learn, and matplotlib

Step 2: Foundational Machine Learning Skills

Unofficial Andrew Ng course notes
Tom Mitchell Machine Learning Lectures

Step 3: Scientific Python Packages Overview

numpy - mainly useful for its N-dimensional array objects
pandas - Python data analysis library, including structures such as dataframes
matplotlib - 2D plotting library producing publication quality figures
scikit-learn - the machine learning algorithms used for data analysis and data mining tasks

Step 4: Getting Started with Machine Learning in Python

iPython Notebook Overview
An Introduction to scikit-learn
Example Machine Learning Notebook
Model Evaluation

Step 5: Machine Learning Topics with Python

k-means Clustering
Decision Trees
Linear Regression
Logistic Regression

Step 6: Advanced Machine Learning Topics with Python

Support Vector Machines
Kaggle Titanic Competition (with Random Forests)
Dimensionality Reduction

Step 7: Deep Learning in Python

Neural Networks and Deep Learning
Theano
Caffe

Python (1) - 7 Steps to Mastering Machine Learning With Python的更多相关文章

  1. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  2. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  3. Seven Steps to Success Machine Learning in Practice

    Seven Steps to Success Machine Learning in Practice Project failures in IT are all too common. The r ...

  4. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  5. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

  6. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

  7. [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn

    In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...

  8. [Machine Learning with Python] Familiar with Your Data

    Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...

  9. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

随机推荐

  1. 0-systemctl开机启动项

    防火墙:iptables Apache服务名称:httpd MySQL服务名称:mysqld VSFTP服务名称:vsftpd <!--CentOS7新指令--> 使某服务 自动启动 sy ...

  2. 【final】站立会议---11.27

    名称:nice! 组长:李权 成员:于淼  刘芳芳韩媛媛 宫丽君 时间:11月27日 13:00 项目内容:约跑app(约吧) 地点:传媒西楼220室 内容: 新任务的分配 1.李权分配任务 2.韩媛 ...

  3. struts 初体验

    1. 什么是Struts2 struts2是以WebWork的设计思想为核心,吸收了Struts1的部分有点,建立了兼容WebWork和Struts1的MVC框架. 1.1 WebWork: 强调系统 ...

  4. Django开发笔记之数据库的设计

    后台采用Django开发,可以体会到开发的便利之处,对于一个项目来说,首先最重要的是数据库的设计,那么在Django下数据库设计主要是如下步骤: 1,需求分析,这点子不用多说,而我也深刻体会到了没有原 ...

  5. Hadoop日志文件分析系统

    Hadoop日志分析系统 项目需求: 需要统计一下线上日志中某些信息每天出现的频率,举个简单的例子,统计线上每天的请求总数和异常请求数.线上大概几十台 服务器,每台服务器大概每天产生4到5G左右的日志 ...

  6. php浏览历史记录

    /** * 商品历史浏览记录 * $data 商品记录信息 */ private function _history($data) { if(!$data || !is_array($data)) { ...

  7. Response.Clear()和Response.ClearContent()区别

    Response.Clear()方法 Clear方法删除所有缓存中的HTML输出.但此方法只删除Response显示输入信息,不删除Response头信息. Response.ClearContent ...

  8. python学习之认识字符串

    1.打印字符串 >>> print ("hello world") hello world 2.使用“/"进行符号转义 >>> pri ...

  9. sql server数据库语句

    -- 3-5  创建表Studnetcreate table Student(Sno char(9) primary key,Sname char(20) UNIQUE,Ssex CHAR(2),Sa ...

  10. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...