解读Unity中的CG编写Shader系列三
转自http://www.itnose.net/detail/6096068.html
在上一个例子中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上。这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁、后面剪裁(front face culling and back face culling)来达到透明效果。
当一个mesh组件的信息被传递后,我们可以通过代码决定哪些部分渲染(render)出来,而哪些部分不要,这个过程就像把那些不要的部分剔除了,我们看不到他,虽然他的mesh信息还在,但是我们的GPU不会去处理它,肯定比剔除前GPU的性能消耗要低。
这个过程就好比我们的mesh组件是一个透明的膜,我们假设这个胶纸我们根本看不到,而片段着色器在着色的时候像毛笔选择性地上色,最后的效果是我们可能看到膜的一部分是可见的,但是不见的地方,膜还是存在的,只是我们没有给他上色,我们既看不看他们,也不需要再他们上面画宝贵的墨水(GPU并行处理能力)
所以我们可以来改造一下上一个例子中的经度绿色假彩色球体,将其经度>0.5的部分擦掉,那么代码应该相应修改为:
Pass{
Cull Off // 关掉裁剪模式,作用后面再说
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct vertexOutput {
float4 pos : SV_POSITION;
//由顶点着色器输出mesh信息中的纹理坐标,这个坐标是以对象为坐标系的
float4 posInObjectCoords : TEXCOORD0;
};
vertexOutput vert(appdata_full input)
{
vertexOutput output;
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);
//直接把texcoord传递给片段着色器
output.posInObjectCoords = input.texcoord;
return output;
}
float4 frag(vertexOutput input) : COLOR
{
//当坐标的y值大于0.5的时候擦除片段
if (input.posInObjectCoords.y > 0.5)
{
discard;
} //其余部分仍然按y值大小生成经度绿色球
return float4(0.0, input.posInObjectCoords.y , 0.0, 1.0);
}
ENDCG
}
那么把这个shader给material,然后给一个球体可以看到我们上次见到的绿色假彩色球只剩下南半球了:
从正面看起来像是实心的
稍微倾斜一下从上面看过去可以看到球体内部是空心的,所以我用膜和毛笔来比喻这个render过程。
我们来把球体换成立方体,看看是什么样子:
可以发现这是一个诡异的立方体,立方体的六个面分别只绘制了一半,且都是下面的一半。
为啥立方体和球体上的效果差别这么大呢?
因为立方体是直角坐标系,球体是极坐标系啊…………扇耳光~~~还给老师了吗 吗吗吗吗吗
同理我们将>0.5改为<0.5,就可以得到球体的北半球。
这是最简单的表面剔除(cuteaway)
更好一点的表面剔除是将片段的位置从对象坐标系转换到世界坐标系,然后根据基础矩阵进行变换可以计算出哪些片段位于其他球体的内部(原始半径是0.5),然后再将位于其他球体内部的表面剔除,这样的话假如两个球互相重叠一部分,那么即使两个球互相绕着自己的球心怎么旋转,没有重叠的部分都会被绘制,而重叠的部分不会被绘制,反正我们看不到,这样省性能。因为即使球体旋转,物体的坐标经过unity的内建矩阵变换为世界坐标后,重叠部分的世界坐标是固定的,所以不会出现两个球体重叠部分表面被裁剪后,旋转一个球之后慢慢看到被裁剪的那个洞了。(因为前面的方法是按对象坐标系裁剪的)
前面与后面剪裁
刚刚的代码中我们看到了Cull Off,这行代码位于CGPROGRAM标记之前,所以他不属于CG的范畴。它是我们Unity中的ShaderLab的指令,所以他不需要分号来结尾。
Cull Off 即为关掉三角形剪裁(为何突然冒出来了三角形,脑补一下,我们的立体图像在计算机中是以三角形拼凑的,正因为如此我们的三维图形才会产生锯齿,那都是三角形的功劳啊)
Cull Front 为前面(外部)剪裁
Cull Back 为后面(内部)剪裁,而这是我们所有Shader的默认模式,也就是说如果Shader不是你自己写的,很可能转动我们的半球的时候,你只看的到前方的曲面而不是半球曲面,不信你可以拖个模型看看
至于为何默认是后面剪裁呢,因为大部分情况下我们的渲染都是对整个三维体的表面进行的,那么既然表面全部被渲染,你就看不到正背对着你的部分,所以默认后面剪裁会节省很多物理性能啊!
不过既然我们将表面进行了擦除,那么我们可以透过被擦除的部分看到背面的内表面,那么我们应该修改这个剪裁模式了,就像一个房子有房顶,我们从正上方看不到房子里面的地板,所以地板应该属于剪裁的范畴。但是如果我们把房顶擦除了(推开房顶),还看不到地板那就有点恐怖了,这种事情就要切换剪裁模式
为了更直观的明白这两种模式,我们修改上面的代码为内部/外部剪裁的双通道(Pass),并且每个Pass中的最后着色不同(红和绿)
要明白一点,Unity中的Shader只会执行一个SubShader,但是会执行所有的Pass
修改后的代码:
Pass{
Cull front // 外部剪裁,那么这个通道可以理解为是给篮球的内表面上色
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct vertexOutput {
float4 pos : SV_POSITION;
//由顶点着色器输出mesh信息中的纹理坐标,这个坐标是以对象为坐标系的
float4 posInObjectCoords : TEXCOORD0;
};
vertexOutput vert(appdata_full input)
{
vertexOutput output;
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);
//直接把texcoord传递给片段着色器
output.posInObjectCoords = input.texcoord;
return output;
}
float4 frag(vertexOutput input) : COLOR
{
//当坐标的y值大于0.5的时候擦除片段
if (input.posInObjectCoords.y > 0.5)
{
discard;
} //其余部分仍然按y值大小生成经度绿色球
return float4(0.0, input.posInObjectCoords.y , 0.0, 1.0);
}
ENDCG
} Pass{
Cull back //内部剪裁,那么这个通道可以理解为是给篮球的外表面上色
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct vertexOutput {
float4 pos : SV_POSITION;
//由顶点着色器输出mesh信息中的纹理坐标,这个坐标是以对象为坐标系的
float4 posInObjectCoords : TEXCOORD0;
};
vertexOutput vert(appdata_full input)
{
vertexOutput output;
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);
//直接把texcoord传递给片段着色器
output.posInObjectCoords = input.texcoord;
return output;
}
float4 frag(vertexOutput input) : COLOR
{
//当坐标的y值大于0.5的时候擦除片段
if (input.posInObjectCoords.y > 0.5)
{
discard;
} //其余部分仍然按y值大小生成经度红色球
return float4(input.posInObjectCoords.y, 0.0 , 0.0, 1.0);
}
ENDCG
}
我们完成了一个拥有两个Pass的Shader,现在看看球体是什么样子:
从顶部往下看,由于完全垂直看下去我们不知道这个球体的凹进去的还是凸出来的,仿佛还是我们上个例子中的绿色经度球,
我们再从底部网上看:
我们还是不知道这个红黑部分是凹的还是凸的,毕竟这是个半球,垂直半球去看没啥发现
我们再从正面偏上看过去:
可见绿黑部分是凹进去的内表面,红黑部分是凸起的外表面~
至此,我们已经可以随心所欲地控制我们的表面哪些地方可见或者不可见啦!
接下来CG还有更神奇的地方等待我们去发现~
解读Unity中的CG编写Shader系列三的更多相关文章
- 解读Unity中的CG编写Shader系列八(镜面反射)
转自http://www.itnose.net/detail/6117378.html 讨论完漫反射之后,接下来肯定就是镜面反射了 在开始镜面反射shader的coding之前,要扩充一下前面提到的知 ...
- [转]解读Unity中的CG编写Shader系列9——镜面反射
讨论完漫反射之后,接下来肯定就是镜面反射了在开始镜面反射shader的coding之前,要扩充一下前面提到的知识,加深理解镜面反射与漫反射的区别.注:这篇文章实现的镜面反射是逐顶点着色(per-ver ...
- [转]解读Unity中的CG编写Shader系列7——漫反射
如果前面几个系列文章的内容过于冗长缺乏趣味着实见谅,由于时间原因前面的混合部分还没有写完,等以后再补充,现在开始关于反射的内容了.折射与反射在物理世界中,光的反射与折射往往是同时存在的,光源由真空或者 ...
- 解读Unity中的CG编写Shader系列七(不透明度与混合)
转自http://www.itnose.net/detail/6098539.html 1.不透明度 当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段 ...
- [转]解读Unity中的CG编写Shader系列6——不透明度与混合
1.不透明度当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段着色器以及后面的环节的主要工作是输出颜色与深度到帧缓存中,所以两个纹理在每个像素上的颜色到 ...
- [转]解读Unity中的CG编写Shader系列3——表面剔除与剪裁模式
在上一个例子中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上.这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后面 ...
- 解读Unity中的CG编写Shader系列3——表面剔除与剪裁模式
在上一个样例中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上. 这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后 ...
- 解读Unity中的CG编写Shader系列十 (光滑的镜面反射(冯氏着色))
前文完成了最基本的镜面反射着色器,单平行光源下的逐顶点着色(per-vertex lighting),又称为古罗着色(Gouraud shading).这篇文章作为后续讨论更光滑的镜面反射方式,逐像素 ...
- 解读Unity中的CG编写Shader系列八(多光源漫反射)
转自http://www.itnose.net/detail/6117338.html 前文中完成最简单的漫反射shader只是单个光源下的漫反射,而往往场景中不仅仅只有一个光源,那么多个光源的情况下 ...
随机推荐
- apache 的工作模式
总结:访问量大的时候使用 worker模式: 每个进程,启动多个线程来处理请求,每个线程处理一次请求,对内存要求比较高. prefoek模式 : 每个子进程只有一个线程,一次请求一个进程. 什么是a ...
- OCS 开放缓存服务
开放缓存服务( Open Cache Service,简称OCS)是在线缓存服务,为热点数据的访问提供高速响应.说白了,就是一款基于memcached开发的对外云缓存服务器,完全可以把OCS当成mem ...
- CSS样式表继承详解
最近在恶补css样式表的基础知识.上次研究了css样式表之冲突问题详解 .这次是对 css 继承 特性的学习. 什么是css 继承?要想了解css样式表的继承,我们先从文档树(HTML DOM)开始. ...
- zepto-selector.js简单分析
zepto 的selector模块是对jquery扩充选择器(jquery-selector-extensions)的部分实现.比如这样的选择方法:$('div:first') 和 el.is(':v ...
- fullPage 全屏滚动【上下滚动】效果
由于个人能力,研究了两天,终于写出来了. 又花了一天的时间成功的将30多行脚本,改成了70多行,我也是够有心的了. 那么接下来就是我制作这个效果的全部过程. 那一年我十七,她十八,在那个夏天里,我们, ...
- ASP.NET Core -- 安装版
首先安装的→Visual Studio Community 原文地址 本来觉得安装了vs 就可以了,,结果一直报错,,,太天真... 接下来还要安装 →NuGet.Tools.vsix →DotNet ...
- Java 中JOptionPane的基本使用方法
JOptionPane 有助于方便地弹出要求用户提供值或向其发出通知的标准对话框.但是有时候看看API也特别烦,因为方法多,参数多,特别难记忆.这里我给出几种常用的方法供大家参考. (1) publi ...
- ELK日志分析系统搭建(转)
摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究 ...
- discuz个人空间主题列表 图片模式实现方法
discuz X3空间主题列表 图片展现模式,discuz实现个人空间主题列表调用图片模式,discuz home图片列表 如果需要实现该呈现方式,我们需要首先了解discuz封面图片存储原理:dis ...
- 如何居中一个div?
CSS 实现垂直居中的几种方案 说到居中,很多人第一反应应该是水平居中,说到水平居中,肯定道友们有一万种方法做到,CSS3 的FlexBox更是强大到没朋友.但是微笑今天想聊的是 CSS 垂直居中 ...