BZOJ3160: 万径人踪灭
设a[i]=bool(s[i]=='a'),b[i]=bool(s[i]=='b'),考虑a和a、b和b的卷积,由于卷积是对称的,就可以统计出不连续回文子串个数了。可能说得比较简略。再用manacher算出连续回文子串个数并减去。
#include<bits/stdc++.h>
using namespace std;
const int p=1e9+7;
const int N=1<<18;
typedef double flo;
const flo pi=acos((flo)-1);
struct vec{flo x,y;};
vec operator+(vec a,vec b){return{a.x+b.x,a.y+b.y};}
vec operator-(vec a,vec b){return{a.x-b.x,a.y-b.y};}
vec operator*(vec a,vec b){return{a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void fft(vec*c,int n,int d){
static int f[N];
f[1]=n>>1;
for(int i=2;i<n;++i){
f[i]=f[i>>1]>>1|f[i&1];
if(i>f[i])
swap(c[i],c[f[i]]);
}
for(int i=1;i<n;i*=2){
vec w={cos(pi/i*d),sin(pi/i*d)};
for(int j=0;j<n;j+=i*2){
vec s={1};
for(int k=j;k<j+i;++k){
vec v=s*c[k+i];
c[k+i]=c[k]-v,c[k]=c[k]+v,s=s*w;
}
}
}
if(!~d)
for(int i=0;i<n;++i)
c[i].x/=n;
}
char z[N];
vec a[N],b[N];
int c[N],f[N];
int main(){
scanf("%s",z);
int n=strlen(z);
int m=4<<__lg(n);
for(int i=0;i<n;++i){
a[i].x=98-z[i];
b[i].x=z[i]-97;
}
fft(a,m,1);
fft(b,m,1);
for(int i=0;i<m;++i)
a[i]=a[i]*a[i]+b[i]*b[i];
fft(a,m,-1);
for(int i=1;i<=n;++i)
c[i]=(c[i-1]*2+1)%p;
int s=0;
for(int i=0;i<m;++i){
int j=a[i].x+.5;
(s+=c[(j+1)/2])%=p;
}
for(int i=n-1;~i;--i){
z[i*2+2]=z[i];
z[i*2+3]='#';
}
z[1]='#';
z[0]='^';
for(int i=1,j=0;z[i];++i){
int k=j+f[j];
f[i]=i<k?min(f[j*2-i],k-i):1;
if(i+f[i]>=k){
j=i;
while(z[i-f[i]]==z[i+f[i]])
++f[i];
}
(s+=p-f[i]/2)%=p;
}
printf("%d\n",s);
}
BZOJ3160: 万径人踪灭的更多相关文章
- [bzoj3160]万径人踪灭_FFT_Manacher
万径人踪灭 bzoj-3160 题目大意:给定一个ab串.求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续. 注释:$1\le n\le 10^5$. 想法: 看了大爷的题解,OrzOrz ...
- BZOJ3160 万径人踪灭 字符串 多项式 Manachar FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列 ...
- BZOJ3160 万径人踪灭(FFT+manacher)
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...
- BZOJ3160万径人踪灭
Description Input & Output & Sample Input & Sample Output HINT 题解: 题意即求不连续但间隔长度对称的回文串个数. ...
- bzoj千题计划302:bzoj3160: 万径人踪灭
https://www.lydsy.com/JudgeOnline/problem.php?id=3160 不连续的回文串数量=所有的回文序列数量-连续的回文子串 连续的回文子串: manacher ...
- BZOJ3160:万径人踪灭(FFT,Manacher)
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{ ...
- BZOJ3160 万径人踪灭 【fft + manacher】
题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\( ...
- BZOJ3160: 万径人踪灭(FFT,回文自动机)
BZOJ传送门: 解题思路: FFT在处理卷积时可以将自己与自己卷,在某一种字母上标1其他标0,做字符集次就好了. (回文就是直接对称可以联系偶函数定义理解,根据这个性质就可以将字符串反向实现字符串匹 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
随机推荐
- DateTime.Now.ToString() 用法
//2008年4月24日 System.DateTime.Now.ToString("D"); //2008-4-24 System.DateTime.Now.ToString(& ...
- MPLS
Multiprotocol Label Switching From Wikipedia, the free encyclopedia "MPLS" redirects here. ...
- 【转】XSD (xml Schema Definition)
来自:http://www.cnblogs.com/newsouls/archive/2011/10/28/2227765.html Xml Schema的用途 1. 定义一个Xml文档中都有什么元 ...
- 《精通CSS网页布局》读书报告 ----2016-12-5补充
第一章:CSS布局基础 1.CSS的精髓是布局,而不是样式哦! (定要好好的研究布局哦,尤其配合html5) 2. html标签的语义性,要好好的看看哦! 3.DTD:文档类型定义. 4.内联--& ...
- FragmentStatePageradapter 与 FragmentPageradapter的区别
FragmentPageradapter : 会将fragment储存在内存中 每次加载页面读取内存中的fragment FragmentStatePageradapter: 不会将fragment储 ...
- 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何
之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...
- Mybatis + SpringMVC + Maven实现分页查询
使用Mybatis + Maven + SpringMVC 运行时,突然被需要分页查询的功能给难住了 这里推荐采用的插件是PageHelper这个插件,使用起来十分方便.该插件支持以下数据库: Ora ...
- 【HDU 5839】Special Tetrahedron(计算几何)
空间的200个点,求出至少四边相等,且其余两边必须不相邻的四面体的个数. 用map记录距离点i为d的点有几个,这样来优化暴力的四重循环. 别人的做法是枚举两点的中垂面上的点,再把到中点距离相等的点找出 ...
- 【OpenJ_POJ C16D】Extracurricular Sports(构造,找规律)
题目求n个互不相同的数,满足其和为其lcm.我们把lcm看成一个线段,分割成长度不同的n份.当然分法有很多,我们只需要构造一个好想好写的.先分成两个二分之一,取其中一个二分之一再分成1/3和2/3,接 ...
- 欢迎加入.Net高级部落 173844862
本群成立至今3年多,聚集了好多大牛级别的人物,欢迎高手前来指教,也欢迎小菜鸟进来学习.群成员热情开朗,有问必答.在这里聊聊技术,谈谈理想,不光技术会得到提高,也会收获一大帮志同道合的朋友,希望在未来的 ...