A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第5章课程讲义下载(PDF)
Summary
- Consistent and inconsistent system
A system of equations $$[A][X]=[B]$$ where $[A]$ is called the coefficient matrix, $[B]$ is called the right hand side vector and $[X]$ is called the solution vector. This system is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions. - Rank
- The rank of a matrix is defined as the order of the largest square sub-matrix whose determinant is not zero.
- For example, the matrix $$[A] = \begin{bmatrix}3& 1& 2\\ 2& 0& 5\\ 5& 1& 7 \end{bmatrix}$$ we know that $$\det(A) = (-1)^{1+2} \times 1 \times \begin{vmatrix}2& 5\\ 5& 7\end{vmatrix} + (-1)^{2+3}\times1\times\begin{vmatrix}3& 2\\ 2& 5\end{vmatrix} = 11 - 11 =0$$ Thus its rank will be less than 3. On the other hand, the determinant of the sub-matrix $\begin{bmatrix}3& 1\\ 2& 0\end{bmatrix}$ is $0-2 = -2\neq0$. Hence the rank of matrix $A$ is 2.
- A system of equations $$[A][X]=[B]$$ is consistent if the rank of $A$ is equal to the rank of the augmented matrix $[A|B]$.
- A system of equations $$[A][X]=[B]$$ is inconsistent if the rank of $A$ is less than the rank of the augmented matrix $[A|B]$.
- In practice, we can use elementary row operation to calculate the rank of a matrix. Or alternatively, directly find the result from the equivalent matrix of the augmented matrix of a system of equations.
- The rank of the coefficient matrix $[A]$ is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix $[A]$ is less than the number of unknowns, then infinite solutions exist.
- A system of equations $$[A][X]=[B]$$
- It has Unique solution if rank$(A) =$ rank$(A|B)=$ number of unknowns;
- It has Infinite solutions if rank$(A)=$ rank$(A|B) < $ number of unknowns;
- It has No solution (i.e. inconsistent) if rank$(A) < $ rank$(A|B)$
- Inverse
- The inverse of a square matrix $[A]$, if existing, is denoted by $[A]^{-1}$ such that $$[A][A]^{-1}=[I]=[A]^{-1}[A]$$ where $[I]$ is the identity matrix. $[A]$ is called to be invertible or nonsingular.
- If $[A]$ and $[B]$ are two $n\times n$ matrices such that $[B][A] = [I]$, then these statements are also true:
- $[B]$ is the inverse of $[A]$
- $[A]$ is the inverse of $[B]$
- $[A]$ and $[B]$ are both invertible
- $[A][B]=[I]$
- $[A]$ and $[B]$ are both nonsingular
- all columns (rows) of $[A]$ and $[B]$ are linearly independent
- Given $$[A][X]=[B]$$ then $[X]=[A]^{-1}[B]$.
- The inverse of an invertible matrix can be found by $$[A]^{-1} = {1\over\det(A)}\text{adj}(A)$$ where $$\text{adj}(A) = \begin{bmatrix}C_{11}& C_{21}&\cdots& C_{n1} \\ \vdots & \vdots& &\vdots\\C_{1n}&C_{2n}&\cdots&C_{nn} \end{bmatrix}$$ where $C_{ij}$ are the cofactors of $a_{ij}$. This formula implies that $\det(A)\neq0$ if $[A]$ is invertible.
- The inverse of a square matrix is unique, if it exists. Since $$\begin{cases}[B][A] = [I]\\ [C][A]=[I]\end{cases}\Rightarrow [B][A][C] = [I][C] = [C]$$ $$\Rightarrow [B][I] = [C]\Rightarrow [B]=[C]$$
Selected Problems
1. For a set of equations $[A][X]=[B]$, a unique solution exists if ( ).
Solution:
rank$(A) =$ rank$(A|B)$ and rank$(A)=$ number of unknowns.
2. What is the rank of matrix $$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}$$
Solution:
$$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}\Rightarrow\begin{cases}R_2-R_1\\ R_3-R_1\\ R_4-R_1\\ {1\over4}R_1\end{cases} \begin{bmatrix}1& 1& 1& 1\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\end{bmatrix}$$ Thus the rank of $[A]$ is 1.
3. A $3\times4$ matrix can have a rank of at most ( )?
Solution:
Since there are no square sub-matrices of order 4 as it is a $3\times4$ matrix, the rank of this matrix is at most 3.
4. If $[A][X]=[B]$ has a unique solution, where the order of $[A]$ is $3\times3$, $[X]$ is $3\times1$, then the rank of $[A]$ is ( ).
Solution:
Since it has a unique solution, that is, the rank of $[A]$ equals to both of the rank of augmented matrix and the number of unknowns, which is 3.
5. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\27\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &27\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow R_2-7R_1 \begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2 \begin{bmatrix}1& 2& 5 & 8\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}\Rightarrow R_1-2R_2 \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}$$ Thus the rank of both coefficient matrix and augmented matrix is 2, which is less than the number of unknowns, that is, it is consistent system and has infinite solutions.
6. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution: The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &1\end{bmatrix}$$ The last row of the above matrix shows that it is an inconsistent system.
7. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 13\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 13 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow R_2-7R_1\begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2\begin{bmatrix}1& 2& 5 & 8\\ 0& 1& {26\over11}&{37\over11}\\ 0& 0& -1 &1\end{bmatrix}\Rightarrow \begin{cases}R_1-2R_2\\ R_2+{26\over11}R_3\end{cases} \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_1+{3\over11}R_3\\-R_3\end{cases} \begin{bmatrix}1& 0& 0 & {17\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& 1 & -1\end{bmatrix}$$ That is, the system is consistent and it has unique solution.
8. For what value of $a$ will the following equation have $$\begin{cases}x_1+x_2+x_3=4\\ x_3=2\\ (a^2-4)x_1+x_3=a-2 \end{cases}$$ (A) Unique solution; (B) No solution; (C) Infinite solutions.
Solution:
The augmented matrix is $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix}$$ If $a=2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& 0\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a=-2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& -4\end{bmatrix}\Rightarrow R_3-R_2 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 0& -6\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a\neq\pm2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix} \Rightarrow {1\over a-2}R_3 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a+2 & 0& {1\over a-2}& 1\end{bmatrix}$$ From the second row we know that $x_2=2$, and deduce that other two unknowns are also unique, that is, it has unique solution. Thus, the system has unique solution if $a\neq\pm2$; the system has no solution if $a=\pm2$; and there is no possible to have infinite solutions.
9. Find the cofactor matrix and the adjoint matrix of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
Firstly, find the cofactors of each $a_{ij}$: $$\begin{cases} C_{11} = M_{11} = -35+1 =-34\\ C_{12}=-M_{12}=-(10+8)=-18\\ C_{13}=M_{13}=2+56 =58\\ C_{21}=-M_{21}=-(20-1)=-19\\ C_{22}=M_{22}=15-8=7\\ C_{23}=-M_{23}=-(3-32)=29 \\ C_{31}=M_{31} = -4+7=4\\ C_{32}= -M_{32} = -(-3-2)=5\\ C_{33}=M_{33}=-21-8=-29 \end{cases}$$ Thus the cofactor matrix is $$\begin{bmatrix}-34& -18 & 58\\ -19& 7& 29\\ 3& 5& -29\end{bmatrix}$$ and the adjoint matrix is the transpose of the cofactor matrix, that is $$\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix}$$
10. Find $[A]^{-1}$ of the matrix $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
From the result of Question 9 and $[A]^{-1}={1\over\det(A)}\text{adj} (A)$, we have $$[A]^{-1}=-{1\over116}\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix} = \begin{bmatrix}{17\over58}& {19\over116}& -{3\over116}\\ {9\over58}& -{7\over116}& -{5\over116} \\ -{1\over2}& -{1\over4}& {1\over4}\end{bmatrix}$$
11. Prove that if $[A]$ and $[B]$ are both invertible and are square matrices of same order, then $$([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
Solution:
$$[A][B][B]^{-1}[A]^{-1}=[A][I][A]^{-1}=[A][A]^{-1}=[I]$$ and $$[B]^{-1}[A]^{-1}[A][B]=[B]^{-1}[I][B]=[B]^{-1}[B]=[I]$$ $$\Rightarrow ([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
12. What is the inverse of a square diagonal matrix? Does it always exist?
Solution:
Since $$\begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}\cdot \begin{bmatrix}b_{11}&0&\cdots&0\\ 0& b_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$ $$= \begin{bmatrix} a_{11}b_{11} & 0 &\cdots &0\\ 0& a_{22}b_{22}&\cdots&0\\ \vdots& \vdots &\cdots &\vdots\\ 0 & 0 & \cdots & a_{nn}b_{nn} \end{bmatrix}$$ The inverse of a square matrix $$[A] = \begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$ is hence $$[A]^{-1} = \begin{bmatrix}{1\over a_{11}} & 0 &\cdots&0\\ 0& {1\over a_{22}}&\cdots&0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & {1\over a_{nn}}\end{bmatrix}$$
13. $[A]$ and $[B]$ are square matrices. If $[A][B]=[0]$ and $[A]$ is invertible, show $[B]=[0]$.
Solution:
$$[A][B]=[0]\Rightarrow [A]^{-1}[A][B]=[A]^{-1}[0]\Rightarrow [I][B]=[0]$$ $$\Rightarrow [B]=[0]$$
14. If $[A][B][C]=[I]$, where $[A]$, $[B]$, and $[C]$ are of the same size, show that $[B]$ is invertible.
Solution:
We will show that $\det(B)\neq0$, which is equivalent to $[B]$ is invertible. $$\det(A)\det(B)\det(C) = \det(ABC)= \det([I]) = 1$$ $$\Rightarrow\begin{cases}\det(A)\neq0\\ \det(B)\neq0\\ \det(C)\neq0\end{cases}$$
15. Prove if $[B]$ is invertible, $$[A][B]^{-1}=[B]^{-1}[A]$$ if and only if $$[A][B]=[B][A]$$
Solution:
$$AB=BA\Rightarrow ABB^{-1}=BAB^{-1}\Rightarrow A=BAB^{-1}$$ $$\Rightarrow B^{-1}A=B^{-1}BAB^{-1}=IAB^{-1}=AB^{-1}$$ On the other hand $$AB^{-1}=B^{-1}A\Rightarrow AB^{-1}B=B^{-1}AB\Rightarrow A=B^{-1}AB$$ $$\Rightarrow BA=BB^{-1}AB=IAB=AB$$
16. For what value if $a$ does the linear system have $$\begin{cases}x+y=2\\ 6x+6y=a\end{cases}$$ (A) infinite solutions; (B) unique solution.
Solution:
It has infinite solution when $a=12$; it is impossible to have unique solution.
17. What is the rank of $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\Rightarrow\begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases} \begin{bmatrix}1& 2& 3\\ 0& -2& -5\\ 0& -2& -5\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_2\\ -{1\over2}R_2\end{cases} \begin{bmatrix}1& 2& 3\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}\Rightarrow R_1-2R_2\begin{bmatrix}1& 0& -2\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}$$ Thus the rank of this matrix is 2.
18. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -7\\ 0& -2 & -5 & -7\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -7\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
19. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -6\\ 0& -2 & -5 & -6\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -6\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
20. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 17\\ 29\end{bmatrix}$$
Solution:
From the previous questions 17, 18, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
21. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 18\\ 30\end{bmatrix}$$
Solution:
From the previous questions 17, 19, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
22. Find the second column of the inverse of $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}$$
Solution:
The second column of the product is $\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$, which is the product of the given matrix and the second column of its inverse, say $\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix}$. Thus we have $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} =\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1+2x_2=0\\ 4x_1+5x_2=1\\ 13x_3=0\end{cases}\Rightarrow \begin{cases}x_1={2\over3}\\ x_2=-{1\over3}\\ x_3=0\end{cases}\Rightarrow \begin{bmatrix}{2\over3}\\ -{1\over3}\\ 0\end{bmatrix}$$
23. Write out the inverse of $$\begin{bmatrix}1& 0& 0& 0\\ 0& 2& 0& 0\\ 0& 0& 4& 0\\ 0& 0& 0& 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 0& 0& 0\\ 0& {1\over2}& 0& 0\\ 0& 0& {1\over4}& 0\\ 0& 0& 0& {1\over5}\end{bmatrix}$$
24. Solve $[A][X]=[B]$ for $[X]$ if $$[A]^{-1}=\begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}$$ and $$[B]=\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix}$$
Solution:
$$[A][X]=[B]$$ $$\Rightarrow [X]=[A]^{-1}[B]= \begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}\cdot\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix} = \begin{bmatrix}52.5 \\ 49.06\\ 50.072 \end{bmatrix}$$
25. Let $[A]$ be a $3\times3$ matrix. Suppose $$[X]=\begin{bmatrix}7\\2.5\\6.012\end{bmatrix}$$ is a solution to the homogeneous set of equations $[A][X]=[0]$. Does $[A]$ have an inverse?
Solution:
$$[A][X]=[0]\Rightarrow [X]=[A]^{-1}[0]=[0]$$ which contradicts to the value of $[X]$. Thus $[A]$ is not invertible.
26. Is the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 4\\ 25\end{bmatrix}$$ linearly independent?
Solution:
If the rank of the vectors is 3, then it would be independent set of vectors. $$\begin{bmatrix}1& 1& 1\\ 1& 2& 4\\ 1& 5& 25\end{bmatrix} \Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 3\\ 0& 4& 24\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 12\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 1\end{bmatrix}$$ whose rank is 3. Thus they are independent vectors.
27. What is the rank of the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 3\\ 6\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 1& 1\\ 1& 2& 3\\ 1& 5& 6\end{bmatrix}\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 2\\ 0& 4& 5\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& -3\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& 1\end{bmatrix}$$ Thus the rank of the vectors is 3.
28. What is the rank of $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}2\\ 2\\ 4\end{bmatrix},\ \vec{C}=\begin{bmatrix}3\\ 3\\ 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 1& 2& 3\\ 1& 4& 5\end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 3\\ 0& 0& 0\\ 0& 2& 2\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 1\\ 0& 0& 0\\ 0& 1& 1\end{bmatrix} $$ Thus the rank of the vectors is 2.
29. The set of equations $$\begin{bmatrix}1& 2& 5\\ 2& 3& 7\\ 5& 8& 19\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}= \begin{bmatrix}18\\ 26\\ 70\end{bmatrix}$$ has ( ) solution(s).
Solution:
$$\begin{bmatrix}1& 2& 5 & 18\\ 2& 3& 7 & 26\\ 5& 8& 19 & 70\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& -2& -6 & -20\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& 0&0 & 0\end{bmatrix}$$ The rank of the coefficient matrix equals to the augmented matrix, which is 2. But it is less than the number of unknowns which is 3. Thus it has infinite solutions.
30. Does $\begin{bmatrix}6& 7\\ 12& 14\end{bmatrix}$ have an inverse?
Solution:
Since the determinant of this matrix is $6\times14-12\times7=0$, thus it does not have inverse.
A.Kaw矩阵代数初步学习笔记 5. System of Equations的更多相关文章
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- 【开源】分享一个前后端分离方案-前端angularjs+requirejs+dhtmlx 后端asp.net webapi
一.前言 半年前左右折腾了一个前后端分离的架子,这几天才想起来翻出来分享给大家.关于前后端分离这个话题大家也谈了很久了,希望我这个实践能对大家有点点帮助,演示和源码都贴在后面. 二.技术架构 这两年a ...
- Web性能优化-合并js与css,减少请求
Web性能优化已经是老生常谈的话题了, 不过笔者也一直没放在心上,主要的原因还是项目的用户量以及页面中的js,css文件就那几个,感觉没什么优化的.人总要进步的嘛,最近在被angularjs吸引着,也 ...
- 学习SQLite之路(一)
工作快一年了,接触的东西不是很多,学到的东西也不多.无意中看到公司的代码有一点关于sqlite3的(不是我这一层负责的代码),于是乎就学学试试. 参考: http://www.runoob.com/s ...
- WebApiTestClient自定义返回值说明
WebApiTestClient是基于微软HelpPage一个客户端调试扩展工具,用来做接口调试比较方便.但是对返回值的自定义说明还是有缺陷的.有园友写过一篇文章,说可以通过对类进行注释,然后通过在I ...
- Bootstrap系列 -- 13. 内联表单
有时候我们需要将表单的控件都在一行内显示.在Bootstrap框架中实现这样的表单效果是轻而易举的,你只需要在<form>元素中添加类名“form-inline”即可 如果你要在input ...
- [BZOJ1061][Noi 2008]志愿者招募(网络流)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1061 分析: 神题不解释,只能欣赏:https://www.byvoid.com/bl ...
- [AJAX系列]XMLHttpResponse对象
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- PHP配置详解
[PHP] ;;;;;;;;;;;;;;;;;;; ; About php.ini ; ;;;;;;;;;;;;;;;;;;; ; This file controls many aspects of ...
- js对象学习
1. 属性类型 数据属性 ①Configurable 表示能否通过delete删除属性,默认值true ②Enumerable 表示能否通过for-in循环访问属性,默认值true ③Writable ...
- navicat cannot create file 文件名、目录名或卷标语法不正确 解决方法
配置了mycat,用navicat连接8066端口,点击“查询”的时候发现出现报错: 开始以为是mycat的配置有问题,找了好久都没发现错误.根据提示信息进入到相应的目录发现每个连接其实就是一个win ...