A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第5章课程讲义下载(PDF)
Summary
- Consistent and inconsistent system
A system of equations $$[A][X]=[B]$$ where $[A]$ is called the coefficient matrix, $[B]$ is called the right hand side vector and $[X]$ is called the solution vector. This system is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions. - Rank
- The rank of a matrix is defined as the order of the largest square sub-matrix whose determinant is not zero.
- For example, the matrix $$[A] = \begin{bmatrix}3& 1& 2\\ 2& 0& 5\\ 5& 1& 7 \end{bmatrix}$$ we know that $$\det(A) = (-1)^{1+2} \times 1 \times \begin{vmatrix}2& 5\\ 5& 7\end{vmatrix} + (-1)^{2+3}\times1\times\begin{vmatrix}3& 2\\ 2& 5\end{vmatrix} = 11 - 11 =0$$ Thus its rank will be less than 3. On the other hand, the determinant of the sub-matrix $\begin{bmatrix}3& 1\\ 2& 0\end{bmatrix}$ is $0-2 = -2\neq0$. Hence the rank of matrix $A$ is 2.
- A system of equations $$[A][X]=[B]$$ is consistent if the rank of $A$ is equal to the rank of the augmented matrix $[A|B]$.
- A system of equations $$[A][X]=[B]$$ is inconsistent if the rank of $A$ is less than the rank of the augmented matrix $[A|B]$.
- In practice, we can use elementary row operation to calculate the rank of a matrix. Or alternatively, directly find the result from the equivalent matrix of the augmented matrix of a system of equations.
- The rank of the coefficient matrix $[A]$ is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix $[A]$ is less than the number of unknowns, then infinite solutions exist.
- A system of equations $$[A][X]=[B]$$
- It has Unique solution if rank$(A) =$ rank$(A|B)=$ number of unknowns;
- It has Infinite solutions if rank$(A)=$ rank$(A|B) < $ number of unknowns;
- It has No solution (i.e. inconsistent) if rank$(A) < $ rank$(A|B)$
- Inverse
- The inverse of a square matrix $[A]$, if existing, is denoted by $[A]^{-1}$ such that $$[A][A]^{-1}=[I]=[A]^{-1}[A]$$ where $[I]$ is the identity matrix. $[A]$ is called to be invertible or nonsingular.
- If $[A]$ and $[B]$ are two $n\times n$ matrices such that $[B][A] = [I]$, then these statements are also true:
- $[B]$ is the inverse of $[A]$
- $[A]$ is the inverse of $[B]$
- $[A]$ and $[B]$ are both invertible
- $[A][B]=[I]$
- $[A]$ and $[B]$ are both nonsingular
- all columns (rows) of $[A]$ and $[B]$ are linearly independent
- Given $$[A][X]=[B]$$ then $[X]=[A]^{-1}[B]$.
- The inverse of an invertible matrix can be found by $$[A]^{-1} = {1\over\det(A)}\text{adj}(A)$$ where $$\text{adj}(A) = \begin{bmatrix}C_{11}& C_{21}&\cdots& C_{n1} \\ \vdots & \vdots& &\vdots\\C_{1n}&C_{2n}&\cdots&C_{nn} \end{bmatrix}$$ where $C_{ij}$ are the cofactors of $a_{ij}$. This formula implies that $\det(A)\neq0$ if $[A]$ is invertible.
- The inverse of a square matrix is unique, if it exists. Since $$\begin{cases}[B][A] = [I]\\ [C][A]=[I]\end{cases}\Rightarrow [B][A][C] = [I][C] = [C]$$ $$\Rightarrow [B][I] = [C]\Rightarrow [B]=[C]$$
Selected Problems
1. For a set of equations $[A][X]=[B]$, a unique solution exists if ( ).
Solution:
rank$(A) =$ rank$(A|B)$ and rank$(A)=$ number of unknowns.
2. What is the rank of matrix $$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}$$
Solution:
$$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}\Rightarrow\begin{cases}R_2-R_1\\ R_3-R_1\\ R_4-R_1\\ {1\over4}R_1\end{cases} \begin{bmatrix}1& 1& 1& 1\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\end{bmatrix}$$ Thus the rank of $[A]$ is 1.
3. A $3\times4$ matrix can have a rank of at most ( )?
Solution:
Since there are no square sub-matrices of order 4 as it is a $3\times4$ matrix, the rank of this matrix is at most 3.
4. If $[A][X]=[B]$ has a unique solution, where the order of $[A]$ is $3\times3$, $[X]$ is $3\times1$, then the rank of $[A]$ is ( ).
Solution:
Since it has a unique solution, that is, the rank of $[A]$ equals to both of the rank of augmented matrix and the number of unknowns, which is 3.
5. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\27\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &27\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow R_2-7R_1 \begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2 \begin{bmatrix}1& 2& 5 & 8\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}\Rightarrow R_1-2R_2 \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}$$ Thus the rank of both coefficient matrix and augmented matrix is 2, which is less than the number of unknowns, that is, it is consistent system and has infinite solutions.
6. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution: The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &1\end{bmatrix}$$ The last row of the above matrix shows that it is an inconsistent system.
7. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 13\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 13 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow R_2-7R_1\begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2\begin{bmatrix}1& 2& 5 & 8\\ 0& 1& {26\over11}&{37\over11}\\ 0& 0& -1 &1\end{bmatrix}\Rightarrow \begin{cases}R_1-2R_2\\ R_2+{26\over11}R_3\end{cases} \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_1+{3\over11}R_3\\-R_3\end{cases} \begin{bmatrix}1& 0& 0 & {17\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& 1 & -1\end{bmatrix}$$ That is, the system is consistent and it has unique solution.
8. For what value of $a$ will the following equation have $$\begin{cases}x_1+x_2+x_3=4\\ x_3=2\\ (a^2-4)x_1+x_3=a-2 \end{cases}$$ (A) Unique solution; (B) No solution; (C) Infinite solutions.
Solution:
The augmented matrix is $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix}$$ If $a=2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& 0\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a=-2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& -4\end{bmatrix}\Rightarrow R_3-R_2 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 0& -6\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a\neq\pm2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix} \Rightarrow {1\over a-2}R_3 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a+2 & 0& {1\over a-2}& 1\end{bmatrix}$$ From the second row we know that $x_2=2$, and deduce that other two unknowns are also unique, that is, it has unique solution. Thus, the system has unique solution if $a\neq\pm2$; the system has no solution if $a=\pm2$; and there is no possible to have infinite solutions.
9. Find the cofactor matrix and the adjoint matrix of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
Firstly, find the cofactors of each $a_{ij}$: $$\begin{cases} C_{11} = M_{11} = -35+1 =-34\\ C_{12}=-M_{12}=-(10+8)=-18\\ C_{13}=M_{13}=2+56 =58\\ C_{21}=-M_{21}=-(20-1)=-19\\ C_{22}=M_{22}=15-8=7\\ C_{23}=-M_{23}=-(3-32)=29 \\ C_{31}=M_{31} = -4+7=4\\ C_{32}= -M_{32} = -(-3-2)=5\\ C_{33}=M_{33}=-21-8=-29 \end{cases}$$ Thus the cofactor matrix is $$\begin{bmatrix}-34& -18 & 58\\ -19& 7& 29\\ 3& 5& -29\end{bmatrix}$$ and the adjoint matrix is the transpose of the cofactor matrix, that is $$\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix}$$
10. Find $[A]^{-1}$ of the matrix $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
From the result of Question 9 and $[A]^{-1}={1\over\det(A)}\text{adj} (A)$, we have $$[A]^{-1}=-{1\over116}\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix} = \begin{bmatrix}{17\over58}& {19\over116}& -{3\over116}\\ {9\over58}& -{7\over116}& -{5\over116} \\ -{1\over2}& -{1\over4}& {1\over4}\end{bmatrix}$$
11. Prove that if $[A]$ and $[B]$ are both invertible and are square matrices of same order, then $$([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
Solution:
$$[A][B][B]^{-1}[A]^{-1}=[A][I][A]^{-1}=[A][A]^{-1}=[I]$$ and $$[B]^{-1}[A]^{-1}[A][B]=[B]^{-1}[I][B]=[B]^{-1}[B]=[I]$$ $$\Rightarrow ([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
12. What is the inverse of a square diagonal matrix? Does it always exist?
Solution:
Since $$\begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}\cdot \begin{bmatrix}b_{11}&0&\cdots&0\\ 0& b_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$ $$= \begin{bmatrix} a_{11}b_{11} & 0 &\cdots &0\\ 0& a_{22}b_{22}&\cdots&0\\ \vdots& \vdots &\cdots &\vdots\\ 0 & 0 & \cdots & a_{nn}b_{nn} \end{bmatrix}$$ The inverse of a square matrix $$[A] = \begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$ is hence $$[A]^{-1} = \begin{bmatrix}{1\over a_{11}} & 0 &\cdots&0\\ 0& {1\over a_{22}}&\cdots&0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & {1\over a_{nn}}\end{bmatrix}$$
13. $[A]$ and $[B]$ are square matrices. If $[A][B]=[0]$ and $[A]$ is invertible, show $[B]=[0]$.
Solution:
$$[A][B]=[0]\Rightarrow [A]^{-1}[A][B]=[A]^{-1}[0]\Rightarrow [I][B]=[0]$$ $$\Rightarrow [B]=[0]$$
14. If $[A][B][C]=[I]$, where $[A]$, $[B]$, and $[C]$ are of the same size, show that $[B]$ is invertible.
Solution:
We will show that $\det(B)\neq0$, which is equivalent to $[B]$ is invertible. $$\det(A)\det(B)\det(C) = \det(ABC)= \det([I]) = 1$$ $$\Rightarrow\begin{cases}\det(A)\neq0\\ \det(B)\neq0\\ \det(C)\neq0\end{cases}$$
15. Prove if $[B]$ is invertible, $$[A][B]^{-1}=[B]^{-1}[A]$$ if and only if $$[A][B]=[B][A]$$
Solution:
$$AB=BA\Rightarrow ABB^{-1}=BAB^{-1}\Rightarrow A=BAB^{-1}$$ $$\Rightarrow B^{-1}A=B^{-1}BAB^{-1}=IAB^{-1}=AB^{-1}$$ On the other hand $$AB^{-1}=B^{-1}A\Rightarrow AB^{-1}B=B^{-1}AB\Rightarrow A=B^{-1}AB$$ $$\Rightarrow BA=BB^{-1}AB=IAB=AB$$
16. For what value if $a$ does the linear system have $$\begin{cases}x+y=2\\ 6x+6y=a\end{cases}$$ (A) infinite solutions; (B) unique solution.
Solution:
It has infinite solution when $a=12$; it is impossible to have unique solution.
17. What is the rank of $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\Rightarrow\begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases} \begin{bmatrix}1& 2& 3\\ 0& -2& -5\\ 0& -2& -5\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_2\\ -{1\over2}R_2\end{cases} \begin{bmatrix}1& 2& 3\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}\Rightarrow R_1-2R_2\begin{bmatrix}1& 0& -2\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}$$ Thus the rank of this matrix is 2.
18. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -7\\ 0& -2 & -5 & -7\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -7\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
19. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -6\\ 0& -2 & -5 & -6\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -6\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
20. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 17\\ 29\end{bmatrix}$$
Solution:
From the previous questions 17, 18, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
21. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 18\\ 30\end{bmatrix}$$
Solution:
From the previous questions 17, 19, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
22. Find the second column of the inverse of $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}$$
Solution:
The second column of the product is $\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$, which is the product of the given matrix and the second column of its inverse, say $\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix}$. Thus we have $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} =\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1+2x_2=0\\ 4x_1+5x_2=1\\ 13x_3=0\end{cases}\Rightarrow \begin{cases}x_1={2\over3}\\ x_2=-{1\over3}\\ x_3=0\end{cases}\Rightarrow \begin{bmatrix}{2\over3}\\ -{1\over3}\\ 0\end{bmatrix}$$
23. Write out the inverse of $$\begin{bmatrix}1& 0& 0& 0\\ 0& 2& 0& 0\\ 0& 0& 4& 0\\ 0& 0& 0& 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 0& 0& 0\\ 0& {1\over2}& 0& 0\\ 0& 0& {1\over4}& 0\\ 0& 0& 0& {1\over5}\end{bmatrix}$$
24. Solve $[A][X]=[B]$ for $[X]$ if $$[A]^{-1}=\begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}$$ and $$[B]=\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix}$$
Solution:
$$[A][X]=[B]$$ $$\Rightarrow [X]=[A]^{-1}[B]= \begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}\cdot\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix} = \begin{bmatrix}52.5 \\ 49.06\\ 50.072 \end{bmatrix}$$
25. Let $[A]$ be a $3\times3$ matrix. Suppose $$[X]=\begin{bmatrix}7\\2.5\\6.012\end{bmatrix}$$ is a solution to the homogeneous set of equations $[A][X]=[0]$. Does $[A]$ have an inverse?
Solution:
$$[A][X]=[0]\Rightarrow [X]=[A]^{-1}[0]=[0]$$ which contradicts to the value of $[X]$. Thus $[A]$ is not invertible.
26. Is the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 4\\ 25\end{bmatrix}$$ linearly independent?
Solution:
If the rank of the vectors is 3, then it would be independent set of vectors. $$\begin{bmatrix}1& 1& 1\\ 1& 2& 4\\ 1& 5& 25\end{bmatrix} \Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 3\\ 0& 4& 24\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 12\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 1\end{bmatrix}$$ whose rank is 3. Thus they are independent vectors.
27. What is the rank of the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 3\\ 6\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 1& 1\\ 1& 2& 3\\ 1& 5& 6\end{bmatrix}\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 2\\ 0& 4& 5\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& -3\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& 1\end{bmatrix}$$ Thus the rank of the vectors is 3.
28. What is the rank of $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}2\\ 2\\ 4\end{bmatrix},\ \vec{C}=\begin{bmatrix}3\\ 3\\ 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 1& 2& 3\\ 1& 4& 5\end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 3\\ 0& 0& 0\\ 0& 2& 2\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 1\\ 0& 0& 0\\ 0& 1& 1\end{bmatrix} $$ Thus the rank of the vectors is 2.
29. The set of equations $$\begin{bmatrix}1& 2& 5\\ 2& 3& 7\\ 5& 8& 19\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}= \begin{bmatrix}18\\ 26\\ 70\end{bmatrix}$$ has ( ) solution(s).
Solution:
$$\begin{bmatrix}1& 2& 5 & 18\\ 2& 3& 7 & 26\\ 5& 8& 19 & 70\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& -2& -6 & -20\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& 0&0 & 0\end{bmatrix}$$ The rank of the coefficient matrix equals to the augmented matrix, which is 2. But it is less than the number of unknowns which is 3. Thus it has infinite solutions.
30. Does $\begin{bmatrix}6& 7\\ 12& 14\end{bmatrix}$ have an inverse?
Solution:
Since the determinant of this matrix is $6\times14-12\times7=0$, thus it does not have inverse.
A.Kaw矩阵代数初步学习笔记 5. System of Equations的更多相关文章
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- swift---不同字体大小不同颜色label富文本设置
agreeDeal = UILabel() //富文本,不同字体颜色大小和颜色 let labelString = "登录注册,表示您同意<服务条款及隐私政策>"as ...
- java实战之解析xml
在java中解析xml有现成的包提供方法,常用的有四类:Dom,JDom,Sax以及Dom4j.其中前者是java中自带的,后三者需要大家从开源诸如sourceforge这样的网站下载jar包,然后在 ...
- 单例模式的两种实现方式对比:DCL (double check idiom)双重检查 和 lazy initialization holder class(静态内部类)
首先这两种方式都是延迟初始化机制,就是当要用到的时候再去初始化. 但是Effective Java书中说过:除非绝对必要,否则就不要这么做. 1. DCL (double checked lockin ...
- 产品列表页分类筛选、排序的算法实现(PHP)
一.简单的单条件查询 工作都是从简单的开始,先从最简单的单表查询开始,这个一般用在首页以及一些比较独立的页面,只需要查找几个符合条件的产品展示出来即可,可以使用分页或者不使用分页.下面这个是产品控制器 ...
- 基于DDD的.NET开发框架 - ABP仓储实现
返回ABP系列 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应 ...
- jsp还是html+ajax
1.有人说JSP会泄露源码(可能会有一些代码痕迹,但肯定没啥大事)2.又说,Ajax是为了分离前后台,让控制部分在前台处理,降低代码耦合度,后台只相当于服务. 3.能够让前台移植,降低后期维护成本.纯 ...
- hwclock 显示或设置CMOS时间
显示或设置CMOS时间 hwclock [options] 选项 -r 默认选项,读取并打印CMOS时间 -s 将CMOS时间设置为系统时间 - ...
- Struts2进行url重写
一般来说我们在用Struts2进行开发的时候我们的访问url都是带上一些类似于.action或者.do还有用?传递参数,这种访问方式与静态页面的访问相比,我就可以用一些开源的组件来进行url的重写,以 ...
- Shell脚本_判断根分区使用率
vim gen_fen_qu_shi_yong_lv.sh chmod 755 gen_fen_qu_shi_yong_lv.sh 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
- 单例模式(Singleton Pattern)
意图 保证一个类仅有一个实例,并提供一个该实例的全局访问点 可将一个实例扩展到n个实例.限定某类最多只能创建n个实例. 双重锁定实现单例模式 C# public sealed class Single ...