BZOJ1057 [ZJOI2007]棋盘制作
Description
Input
Output
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
N, M ≤ 2000
正解:单调栈 or 悬线法
解题报告:
为了巩固单调栈来写的这道题...
对于一个题目要求的棋盘我们不是很好直接求,考虑我们可以把其转换成我们熟悉的模型——最大全0子矩阵。对于为0而且横纵坐标奇偶性不同的标为1,为1而且横纵坐标奇偶性相同的标为1;对于为1而且横纵坐标不同的标为0,对于为0而且横纵坐标相同的标为0。题目就转换成了最大全0子矩阵了。然后我们考虑单调栈的做法,维护一个数组,表示每个点最多可以往右拓展多远(1为障碍)。按列做,一行行扫,单调栈里面维护一个拓展宽度递增的值,发现当前行的这一列已经比栈顶元素小了,就弹栈直到合法。注意时刻更新一下答案,和栈中每个元素的实际控制范围(即往上可以到达哪一行)。考虑我们如果栈顶元素为S,那么i到栈顶所在行之间一定都比S大,不然S会在之前已经被弹出栈,所以相当于是S到i之间的这一大块宽度就是S(其余大于S的部分没有用),画一下图就很快可以懂了。
当然,悬线法也是可以的,转完模型就是裸题了。
单调栈:
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
int n,m,ans,ans2;
int a[MAXN][MAXN];
int ri[MAXN][MAXN];//可以往右延伸多少
int stack[MAXN],top,up[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline void getR(){ for(int i=;i<=n;i++) for(int j=m;j>=;j--) if(a[i][j]) ri[i][j]=ri[i][j+]+; else ri[i][j]=; }
inline void getA(){
int to,lin;
for(int j=;j<=m;j++){
top=;
for(int i=;i<=n;i++) {
to=i;//栈内元素的控制范围
while(top> && stack[top]>=ri[i][j]) {
lin=min(stack[top],i-up[top]); lin*=lin;
ans=max(ans,lin); lin=stack[top]*(i-up[top]);
ans2=max(ans2,lin);//i到栈顶元素之间的每一行能拓展的宽度一定都大于等于当前栈顶,不然当前栈顶会被弹掉(画图可知)
to=min(to,up[top]);
top--;
}
stack[++top]=ri[i][j]; up[top]=to;
}
}
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=getint();
for(int i=;i<=n;i++) for(int j=;j<=m;j++) if(((i&)==(j&) && a[i][j])||((i&)!=(j&) && !a[i][j])) a[i][j]=; else a[i][j]=;
getR(); getA(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=!a[i][j];
getR(); getA(); printf("%d\n%d",ans,ans2);
} int main()
{
work();
return ;
}
悬线法:
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
int n,m,ans,ans2;
int a[MAXN][MAXN];
int topl[MAXN],topr[MAXN],nowl,nowr,up[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void getA(){
int lin; memset(up,,sizeof(up)); //memset(topl,0,sizeof(topl)); memset(topr,0,sizeof(topr));
for(int i=;i<=m;i++) topl[i]=,topr[i]=m;
for(int i=;i<=n;i++){
nowl=,nowr=m+;
for(int j=;j<=m;j++) {
if(a[i][j]) {
up[j]=;//清零
topl[j]=; nowl=j;
}
else up[j]++,topl[j]=max(nowl+,topl[j]);
}
for(int j=m;j>=;j--) {
if(a[i][j]) {
topr[j]=m; nowr=j;
}
else {
topr[j]=min(topr[j],nowr-);
lin=min(topr[j]-topl[j]+,up[j]); lin*=lin;
ans=max(ans,lin);lin=(topr[j]-topl[j]+)*up[j];
ans2=max(ans2,lin);
}
}
}
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=getint();
for(int i=;i<=n;i++) for(int j=;j<=m;j++) if(((i&)==(j&) && a[i][j])||((i&)!=(j&) && !a[i][j])) a[i][j]=; else a[i][j]=;
getA(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=!a[i][j]; getA();
printf("%d\n%d",ans,ans2);
} int main()
{
work();
return ;
}
BZOJ1057 [ZJOI2007]棋盘制作的更多相关文章
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作
洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...
- 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作
好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...
- bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵
既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
随机推荐
- Html5的一些引擎使用感触
记得在2011年的时候,51CTO曾经采访我对H5的看法,因为当时Html5小组和雷友的关系,感觉是一片大火的形式,当时我的看法是:第一盈利模式不清晰,第二硬件跟不上,第三技术不成熟. 第一和第二点很 ...
- Spring Security笔记:解决CsrfFilter与Rest服务Post方式的矛盾
基于Spring Security+Spring MVC的web应用,为了防止跨站提交攻击,通常会配置csrf,即: <http ...> ... <csrf /> </ ...
- c++ 指针(二)
函数指针 可以使用算法的地址传递给方法,传递之前要先完成以下工作 1.获取函数的地址 2.声明一个函数指针 3.使用函数指针来调用函数 1.获取函数的地址,只要使用函数名就可以 Fun2(Fun1); ...
- 使用docker发布spring cloud应用
本文涉及到的项目: cloud-simple-docker:一个简单的spring boot应用 Docker是一种虚拟机技术,准确的说是在linux虚拟机技术LXC基础上又封装了一层,可以看成是基于 ...
- 怎样关闭google的自动更新
谷歌的自动更新很烦人的,只要你点击关于Google Chrome,谷歌就会自动更新成最新版本. 但是sencha框架好像与谷歌29.0以上的兼容性不是很好,所以关闭谷歌自动更新的需求来了,网上很多人说 ...
- Http协议中的Content-Length属性
Android开发的时候需要与从服务器上获取数据,数据是通过http协议封装的.Android端使用的是Xutils第三方插件来发起http请求,但是每次只能拿到部分数据.通过仔细分析后原来是Cont ...
- java中的全等和相似
package pack2; import java.util.*; /*Node 的equals()和hashCode()两个函数缺一不可 * HashSet会通过这两个函数来判断两个元素是否等价 ...
- STL中的next_permutation
给定一个数组a[N],求下一个数组. 2 1 3 4 2 1 4 3 2 3 1 4 2 3 4 1 ..... 在STL中就有这个函数: 1.参数是(数组的第一个元素,数组的末尾),注意这是前闭后开 ...
- Windows去除快捷箭头
美化桌面 bat代码: reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shel ...
- Golang操作数据库
基本概念 Open() – creates a DB Close() - closes the DB Query() - 查询 QueryRow() -查询行 Exec() -执行操作,update, ...