Description

  国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源
于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,
正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定
将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种
颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找
一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他
希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全
国信息学竞赛的你,你能帮助他么?

Input

  第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形
纸片的颜色(0表示白色,1表示黑色)。

Output

  包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋
盘的面积(注意正方形和矩形是可以相交或者包含的)。

Sample Input

3 3
1 0 1
0 1 0
1 0 0

Sample Output

4
6

HINT

N, M ≤ 2000

正解:单调栈 or 悬线法

解题报告:

  为了巩固单调栈来写的这道题...

  对于一个题目要求的棋盘我们不是很好直接求,考虑我们可以把其转换成我们熟悉的模型——最大全0子矩阵。对于为0而且横纵坐标奇偶性不同的标为1,为1而且横纵坐标奇偶性相同的标为1;对于为1而且横纵坐标不同的标为0,对于为0而且横纵坐标相同的标为0。题目就转换成了最大全0子矩阵了。然后我们考虑单调栈的做法,维护一个数组,表示每个点最多可以往右拓展多远(1为障碍)。按列做,一行行扫,单调栈里面维护一个拓展宽度递增的值,发现当前行的这一列已经比栈顶元素小了,就弹栈直到合法。注意时刻更新一下答案,和栈中每个元素的实际控制范围(即往上可以到达哪一行)。考虑我们如果栈顶元素为S,那么i到栈顶所在行之间一定都比S大,不然S会在之前已经被弹出栈,所以相当于是S到i之间的这一大块宽度就是S(其余大于S的部分没有用),画一下图就很快可以懂了。

  当然,悬线法也是可以的,转完模型就是裸题了。

  单调栈:

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
int n,m,ans,ans2;
int a[MAXN][MAXN];
int ri[MAXN][MAXN];//可以往右延伸多少
int stack[MAXN],top,up[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline void getR(){ for(int i=;i<=n;i++) for(int j=m;j>=;j--) if(a[i][j]) ri[i][j]=ri[i][j+]+; else ri[i][j]=; }
inline void getA(){
int to,lin;
for(int j=;j<=m;j++){
top=;
for(int i=;i<=n;i++) {
to=i;//栈内元素的控制范围
while(top> && stack[top]>=ri[i][j]) {
lin=min(stack[top],i-up[top]); lin*=lin;
ans=max(ans,lin); lin=stack[top]*(i-up[top]);
ans2=max(ans2,lin);//i到栈顶元素之间的每一行能拓展的宽度一定都大于等于当前栈顶,不然当前栈顶会被弹掉(画图可知)
to=min(to,up[top]);
top--;
}
stack[++top]=ri[i][j]; up[top]=to;
}
}
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=getint();
for(int i=;i<=n;i++) for(int j=;j<=m;j++) if(((i&)==(j&) && a[i][j])||((i&)!=(j&) && !a[i][j])) a[i][j]=; else a[i][j]=;
getR(); getA(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=!a[i][j];
getR(); getA(); printf("%d\n%d",ans,ans2);
} int main()
{
work();
return ;
}

悬线法:

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
int n,m,ans,ans2;
int a[MAXN][MAXN];
int topl[MAXN],topr[MAXN],nowl,nowr,up[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void getA(){
int lin; memset(up,,sizeof(up)); //memset(topl,0,sizeof(topl)); memset(topr,0,sizeof(topr));
for(int i=;i<=m;i++) topl[i]=,topr[i]=m;
for(int i=;i<=n;i++){
nowl=,nowr=m+;
for(int j=;j<=m;j++) {
if(a[i][j]) {
up[j]=;//清零
topl[j]=; nowl=j;
}
else up[j]++,topl[j]=max(nowl+,topl[j]);
}
for(int j=m;j>=;j--) {
if(a[i][j]) {
topr[j]=m; nowr=j;
}
else {
topr[j]=min(topr[j],nowr-);
lin=min(topr[j]-topl[j]+,up[j]); lin*=lin;
ans=max(ans,lin);lin=(topr[j]-topl[j]+)*up[j];
ans2=max(ans2,lin);
}
}
}
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=getint();
for(int i=;i<=n;i++) for(int j=;j<=m;j++) if(((i&)==(j&) && a[i][j])||((i&)!=(j&) && !a[i][j])) a[i][j]=; else a[i][j]=;
getA(); for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=!a[i][j]; getA();
printf("%d\n%d",ans,ans2);
} int main()
{
work();
return ;
}

BZOJ1057 [ZJOI2007]棋盘制作的更多相关文章

  1. BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 1848  Solved: 936 [Submit][Sta ...

  2. BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 3248  Solved: 1636 [Submit][St ...

  3. BZOJ1057[ZJOI2007]棋盘制作 [单调栈]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...

  4. 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作

    洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...

  5. 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作

    好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...

  6. bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]

    Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...

  7. bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵

    既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...

  8. 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)

    传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...

  9. bzoj1057: [ZJOI2007]棋盘制作(悬线法)

    题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...

随机推荐

  1. Linux execve函数簇用法

    exec函数簇实现的功能都是用一个新程序替换原来的程序,替换的内容包括堆栈段,代码段,进程控制器PCD,但是原进程的PID保持不变 int execl(const char *path, const ...

  2. 【分布式协调器】Paxos的工程实现-cocklebur选举

    其实整个项目中一个最主要的看点就是选举算法,而这部分也是逻辑最复杂最难理解的部分.不同的实现在不同的场景下的策略也不尽相同,而且场景非常之多.接下来我们一起来看一下Cocklebur的实现思路. 一个 ...

  3. 将DBF文件导入Sqlserver数据库

    项目中的问题:用户选择N个dbf文件导入sql2005数据库,由于每年dbf表结构都在变化,所以在sql2005中根本就不存在,需要每年根据dbf的结构自动建表.(文章来自http://blog.cs ...

  4. Infer.net 开源组件: 1, 机器学习入门,要从贝叶斯说起

    我的入门方式,先从应用现象中,总结规律反推本质.一头扎进理论书籍是不对的. 老外的先进,还是体现在传承方面.没办法,我们竞争压力大,有好东西藏着掖着.大家都苦逼 我最开始是从介绍,有了基本概念,见xx ...

  5. [已开源/文章教程]独立开发 一个社交 APP 的源码/架构分享 (已上架)

    0x00 背景 真不是和被推荐了2天的博客园一位大神较真,从他那篇文章的索引式文章内容也学习到了很多东西,看评论区那么多对社交APP源码有兴趣的,正巧我上周把我的一个社交APP开源了,包括androi ...

  6. css的active事件在手机端不生效的解决方法

    对一名前端来说,改页面的过程总是痛苦的,产品经理说要加个点击样式,于是加active的class,本来以为这样就OK了,没想到电脑上ok,本地测也是ok的,tomcat上一跑就没效果了.我甚至把! i ...

  7. C 语言学习的第 02 课:C 语言的开发环境

    工欲善其事,必先利其器.不知道还是不是记得上一篇文章中说到的,计算机本身是一个数据输入及输出的设备.所以,为了将你大脑中的各种 idea 输入到电脑,且最终生成能够执行的程序,总是要预备点什么的. 通 ...

  8. git的配置

    git的配置: Git 提供了一个叫做 git config 的工具,专门用来配置或读取相应的工作环境变量. 这些环境变量,决定了 Git 在各个环节的具体工作方式和行为.这些变量可以存放在以下三个不 ...

  9. 了解ASP.NET MVC几种ActionResult的本质:JavaScriptResult & JsonResult

    在之前的两篇文章(<EmptyResult & ContentResult>和<FileResult>)我们剖析了EmptyResult.ContentResult和F ...

  10. 关于使用 lua 脚本抢红包

    1 java代码 package com.robert.RedisTest; import redis.clients.jedis.Jedis; public class RedisClient { ...